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Article history: Epidemiological evidence supports the observation that subjects with type 2 diabetes (T2D)
Received 12 June 2015 are at higher risk to develop Alzheimer’s disease (AD). However, whether and how these
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: ! two conditions are causally linked is unknown. Possible mechanisms include shared genetic
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risk factors, which were investigated in this study based on recent genome wide associ-
ation study (GWAS) findings. In order to achieve our goal, we retrieved single nucleotide
polymorphisms (SNPs) associated with T2D and AD from large-scale GWAS meta-
analysis consortia and tested for overlap among the T2D- and AD-associated SNPs at various
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GWAS p-value thresholds. We then explored the function of the shared T2D/AD GWAS SNPs by
Shared genomic component leveraging expressional quantitative trait loci, pathways, gene ontology data, and co-
eQTLs expression networks. We found 927 SNPs associated with both AD and T2D with
Pathway p-value <0.01, an overlap significantly larger than random chance (overlapping p-val-

ue of 6.93E-28). Among these, 395 of the shared GWAS SNPs have the same risk allele for
AD and T2D, suggesting common pathogenic mechanisms underlying the development of
both AD and T2D. Genes influenced by shared T2D/AD SNPs with the same risk allele were
first identified using a SNP annotation variation (ANNOVAR) software, followed by using
Association Protein-Protein Link Evaluator (DAPPLE) software to identify additional pro-
teins that are known to physically interact with the ANNOVAR gene annotations. We found
that gene annotations from ANNOVAR and DAPPLE significantly enriched specific KEGG
pathways pertaining to immune responses, cell signaling and neuronal plasticity, cellular
processes in which abnormalities are known to contribute to both T2D and AD pathogen-
esis. Thus, our observation suggests that among T2D subjects with common genetic
predispositions (e.g., SNPs with consistent risk alleles for T2D and AD), dysregulation of
these pathogenic pathways could contribute to the elevated risks for AD in subjects. In-
terestingly, we found that 532 of the shared T2D/AD GWAS SNPs had divergent risk alleles
in the two diseases. For individual shared T2D/AD SNPs with divergent alleles, one of the
allelic forms may contribute to one of the diseases (e.g., T2D), but not necessarily to the
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other (e.g., AD), or vice versa. Collectively, our GWAS studies tentatively support the
epidemiological observation of disease concordance between T2D and AD. Moreover, the
studies provide the much needed information for the design of future novel therapeutic
approaches, for a subpopulation of T2D subjects with genetic disposition to AD, that could
benefit T2D and reduce the risk for subsequent development of AD.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

An estimated 347 million people worldwide suffer from
diabetes, with 90% of this population (312 million) suffer-
ing specifically from type 2 diabetes (T2D) (World Health
Organization, 2015), exerting enormous burdens on
individuals and on healthcare systems (World Health
Organization, 2015), especially given that there is cur-
rently no cure for T2D. Diabetes is a risk factor for a number
of disabling and even life-threatening complications over
the long-term. For example, one of the major long-term com-
plications of T2D is an increased risk for developing
Alzheimer’s disease (AD) (Luchsinger and Gustafson, 2009;
Muller et al., 2007; Vagelatos and Eslick, 2013). AD is the
most common form of age-related dementia, accounting for
up to 80% of dementia cases (Alzheimer’s Association, 2015);
an estimated 44.4 million people worldwide suffer from AD
and dementia (Alzheimer’s Disease International, 2013).
Similar to T2D, AD exerts an enormous burden on individ-
ual patients and healthcare systems, and there is currently
no cure for AD. Extensive epidemiological, clinical, and ex-
perimental evidence strongly suggest a causative role of
diabetes in the onset and progression of AD-type demen-
tia. The National Diabetes Health Fact Sheet indicates that
approximately 8.3% of Americans have diabetes, and it is es-
timated that approximately 30% of Americans over the age
of 65 affected by AD have co-morbidity with at least one
serious medical condition associated with diabetes. A recent
systematic meta-analysis of 15 epidemiologic studies sug-
gests that patients with T2D have an elevated relative risk
ratio of 1.57 for developing AD (Vagelatos and Eslick, 2013).

Specific mechanistic interactions connecting diabetes and
AD remain unknown. There is also no information on why
certain subpopulations of diabetic individuals develop AD
or how to identify at-risk individuals in order to target them
for early, secondary preventive interventions. Mounting ev-
idence suggests that AD dementia can be traced back to
pathological conditions, such as T2D, that are initiated several
decades before clinical AD onset. Since T2D is one of the po-
tentially modifiable risk factors for AD (Luchsinger and
Gustafson, 2009; Muller et al., 2007; Vagelatos and Eslick,
2013), interventions targeting T2D phenotypes prior to the
onset of AD dementia represent a potentially effective sec-
ondary preventive strategy to help reduce the prevalence
of AD.

Both T2D and AD are complex diseases, each involving
multiple etiologic contributing factors (Gautrin and Gauthier,
1989; Henriksen et al., 2011; Jiang et al., 2013; Morris et al.,
2014; Onso-Magdalena et al., 2011; Raciti et al.,, 2015).
Among these, genetic predisposition factors are known to
play important roles in both T2D and AD (Chouraki and
Seshadri, 2014; Prasad and Groop, 2015; Raciti et al., 2015;
Tanzi, 2012). We hypothesize that T2D may share common
underlying genetic etiologies with AD, and that the pres-
ence of these shared T2D/AD genetic etiologies in a subset
of individuals may contribute to the development of T2D
in these individuals, as well as the development of AD over
the long-term. Recent applications of Genome-Wide Asso-
ciation Studies (GWAS) have led to the identification of
genetic variants, particularly single nucleotide polymor-
phisms (SNPs), for a number of complex diseases, including
schizophrenia and cardiovascular diseases (Kendler, 2015;
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Schunkert et al., 2011). Using GWAS methodologies, the
present study investigated whether T2D and AD share
common genetic etiological factors and, if so, dissected the
potential impacts of these genetic factors on cellular/
molecular mechanisms that may contribute to the
development of T2D and AD. Outcomes from our studies
provide a better understanding and will allow for im-
proved identification of T2D subjects at genetic risk to
develop AD. This information is of paramount interest in
order to redirect efforts for potential therapeutic interven-
tions in a certain T2D subpopulation, and is also a
fundamental aspect in the long-term management of T2D.

2. Materials and methods

2.1. Identification of SNPs associated with risk for either T2D
or AD

In order to identify the SNPs that are associated with risk
for T2D, we retrieved the meta-GWAS statistics from the
DIAbetes Genetics Replication And Meta-analysis (DIAGRAM)
consortium study (Morris et al., 2012), which was gener-
ated from a study cohort of 34,840 T2D and 114,981 non-
T2D control cases that are overwhelmingly of European
descent. These T2D summary statistics provide a distribu-
tion frequency of over 2 million SNPs (imputed based on
HapMap reference), among which 34,840 are T2D and
114,981 are non-T2D control cases. A meta-analysis was per-
formed in order to join multiple individual GWAS cohorts
and test individual SNPs for association with T2D.

In order to identify the SNPs that are associated with risk
for AD, we retrieved meta-GWAS statistics from the Inter-
national Genomics of Alzheimer’s Project (IGAP) (Lambert
et al., 2013) study that was generated from over 7 million
directly genotyped or imputed SNPs (1000 Genome refer-
ence), for 17,008 AD cases and 37,154 non-AD control cases
of European descent. Moreover, we obtained summary sta-
tistics (from the IGAP database) for 11,632 SNPs that were
genotyped and tested for association with AD in an inde-
pendent cohort of 8,572 AD cases and 11,312 non-AD control
cases. IGAP conducted a meta-analysis combining the results
of individual cohorts in order to test individual SNPs for their
association with AD.

Multiple cutoff p-value criteria for the identification of
significant SNP associations were considered in our anal-
yses. For a given SNP, the allele that showed the higher
frequency in cases (T2D or AD) than in controls (non-T2D
or non-AD) was denoted as the risk allele.

2.2. Identification of SNPs associated with risk for both T2D
and AD

The effect size attributable to individual genetic vari-
ants for a given complex disorder is typically modest,
suggesting that individual genetic variants may only explain
a very small amount of the genetic risk and heritability of
complex disorders (Manolio and Collins, 2007). Therefore,
genetic contributions to complex conditions such as T2D and
AD are likely derived from a large number of genetic causal
variants, each contributing a small genetic risk. Thus, we
chose a “relaxed” cutoff genetic association p-value of 1E-2

as a criterion for identifying SNPs that are associated with
risk for T2D or for AD in order to more comprehensively
capture SNPs with small effect sizes. We then overlapped
the two listings of SNPs associated with risk for T2D or AD
and identified a subset of shared T2D/AD SNPs found in both
listings, which are associated with risk for both T2D and AD.
For each of the shared SNPs, we identified the specific SNP
allele that is associated with risk for T2D and the specific
SNP allele that is associated with risk for AD. We then further
subdivided the shared T2D/AD SNPs into 2 subcategories:
shared SNPs with “consistent risk alleles,” such that the risk
allele for AD is also the risk allele for T2D, and T2D/AD shared
SNPs with “divergent risk alleles,” such that the risk allele
for T2D is different from the risk allele for AD. For a given
shared T2D/AD SNP characterized by a consistent risk allele,
the molecular process(es)/pathway(s) associated with the
risk allele variant could be a common pathogenic factor(s)
for both T2D and AD. Thus, the presence of this shared, con-
sistent risk allele among T2D cases, could contribute to the
risk for subsequent development of AD. In contrast, for a
given shared T2D/AD SNP that is characterized by a diver-
gent risk allele, the presence of the T2D risk allele variant
could contribute to risk for the development of T2D but may
not necessarily contribute to AD, or vice versa.

In overlap analysis, we partitioned the SNPs that
were studied in both AD and T2D GWAS into four bins:
(1) SNPs passed GWAS p-value cutoff in both diseases;
(2) SNPs passed GWAS p-value cutoff in AD but not
T2D; (3) SNPs passed GWAS p-value cutoff in T2D but not
AD; (4) SNPs passed GWAS p-value cutoff in neither T2D nor
AD. We then computed overlap OR and p-value (hypergeo-
metric test) based on the contingency table formed by the
four bins. Among the shared AD-T2D SNPs, we computed
the p-value of risk allele consistency. Under the null hy-
pothesis (H,), the ratio of SNPs of consistent allele among
all AD-T2D shared SNPs was 0.5. For each of the shared AD-
T2D SNPs, when the observed consistent allele ratio deviated
from H,, the p-value was computed using binominal
distribution.

2.3. GWAS meta-analysis from additional complex diseases

CARDIoGRAMplusC4D contains summary data from 2
large meta-analyses of coronary artery disease (CAD):
(1) CARDIoGRAM (Coronary ARtery Disease Genome wide
Replication and Meta-analysis), a meta-analysis of 22 GWAS
studies of European descent imputed to HapMap 2 involv-
ing 22,233 cases and 64,762 controls (Schunkert et al., 2011),
and (2) C4D (The Coronary Artery Disease Genetics con-
sortium), a meta-analysis of GWAS studies of European and
South Asian descent involving 15,420 cases and 15,062 con-
trols (Coronary Artery Disease (C4D) Genetics Consortium,
2011).

2.4. Expression quantitative trait loci (eQTL) of disease-
relevant tissues

Potential influences of individual SNP genetic variants
on gene expression (i.e., on the genes that might be modu-
lated by individual SNP genetic variants and/or on the
direction/magnitude by which specific SNP variants may
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affect gene expression) were derived primarily from avail-
able published expression quantitative trait loci (eQTL)
databases. In order to dissect the potential impacts of in-
dividual SNPs on T2D etiology, we used a published eQTL
database with genome-wide SNP and RNA expression in-
formation from multiple peripheral tissues that are most
relevant to diabetes: liver (n=568), omental adipose
(n=675), and subcutaneous adipose (n=611) (Greenawalt
et al.,, 2011).

In order to dissect the potential impacts of individual
SNPs on AD etiology, we used a published eQTL database
with genome-wide SNP and RNA expression information
from multiple brain tissues: prefrontal cortex (pfc, n=583),
visual cortex (vc, n=409), and cerebellum (cr, n =496)
(Podtelezhnikov et al., 2011; Zhang et al., 2013). In addi-
tion, we performed genotype imputation (1000 genome
reference following MaCH software pipeline (Howie et al.,
2012) and eQTL discovery). The eQTLs were quantified at
10% false discovery rate (FDR) and served as an empirical
bridge between DNA polymorphisms (e.g., SNPs) and tran-
scription levels. Cis-eQTLs were used when the distance
between the SNP and genes under influence were within
500 kb, and such SNPs were denoted as cis-eSNP. Trans-
eQTLs were used when the distance between the SNP and
gene was greater than 500 kb or were located on different
chromosomes, and such SNPs were denoted as trans-
eSNP. Significant eSNP is defined as the SNP-expression
association that passes 10% FDR in at least one tissue. The
ENCODE (Encyclopedia of DNA Elements) database was
downloaded from regulomeDB (Boyle et al., 2012).

2.5. Annotation of SNPs using the an annotate variation
(ANNOVAR) software

The ANNOVAR software (Wang et al., 2010) was used to
annotate all variants. Functional consequences of variants
were evaluated by the SIFT (Ng and Henikoff, 2003) and
PolyPhen-2 (Adzhubei et al., 2010) softwares. SIFT pre-
dicts whether an amino acid substitution affects protein
function based on the degree of conservation of the amino
acid residues. PolyPhen-2 predicts the possible impact of
amino acid substitution on the structure and function of a
human protein based on physicochemical properties of the
amino acids involved.

2.6. Disease Association Protein-Protein Link Evaluator
(DAPPLE) analysis

The hypothesis behind DAPPLE is that causal genetic vari-
ants affect common mechanisms, and that these mechanisms
can be inferred by looking for physical connections between
proteins encoded in disease-associated regions (Rossin et al.,
2011). Genes generated from ANNOVAR analysis were used
as input to the analysis. DAPPLE constructed direct and in-
direct interaction networks from the input genes, assessed
statistical significance of network connectivity param-
eters using permutation-based methods, and produced an
expanded set of genes most likely to be associated with the
input genes in protein—-protein interaction networks.

2.7. Gene ontology and KEGG pathway enrichment analysis

KEGG pathway enrichment analysis was performed using
the Database for Annotation, Visualization and Integrated
Discovery (DAVID) v6.7, a tool that is able to identify the
functional categories and biological processes which are most
represented within a list of genes (Huang et al., 2009). Gene
lists derived from shared T2D/AD SNPs with consistent risk
alleles were used as input of the DAVID analysis. A program
(written in R) was developed that allows execution of DAVID
in a batch processing manner. The “first round” of DAVID
analysis was performed using the initial ANOVAR gene lists
derived from shared T2D/AD SNPs with consistent alleles.
The “second round” of DAVID analysis (“real run”) was per-
formed using the initial gene list plus the gene list produced
by DAPPLE.

3. Results

3.1. Identification of SNPs associated with either risk
for T2D or AD

Starting with independent DIAGRAM and IGAP meta-
GWAS result statistics, we used multiple GWAS genetic
association p-values (ranging from 1E-8 to 1E-2) as cutoff
criteria and identified SNPs that are associated with AD or
T2D for specific GWAS p-value thresholds (Table 1). There
is a general consensus among GWAS studies that a p-value
less than 5E-8 corresponds to genome-wide significance
(Stranger et al., 2011). Using a GWAS p-value threshold of
1E-8, we identified 661 and 356 SNPs that meet the gen-
erally accepted criterion for GWAS significance for
association with T2D and AD, respectively (Table 1).

Identifying the genes influenced by T2D- or AD-associated
SNPs is a key step toward elucidating the functional impacts
of these SNPs in health and in disease. Thus, we employed
large eQTL datasets of relevant tissues to empirically iden-
tify genes whose expression levels were influenced by the
AD or the T2D SNPs. Our eQTL analyses were conducted
using tissues relevant to T2D (e.g., adipose and liver) and
AD (brain); eQTLs were calibrated at 10% FDR to control for
multiple testing.

Among the 661 T2D SNPs we identified at a GWAS
threshold selection p-value criterion of 1E-8, we found 566

Table 1

Identification of SNPs associated with risk for T2D or AD.
GWAS p-value Number of SNPS
threshold 2D AD
1.0E-08 661 356
1.0E-07 840 448
1.0E-06 1,087 755
1.0E-05 1,516 1,296
1.0E-04 2,758 2,357
1.0E-03 8,265 6,140
1.0E-02 42,200 35,473
1.0E-01 298,496 272,746

Meta-GWAS result statistics from DIAGRAM (T2D) and IGAP (AD) were fil-
tered using multiple GWAS threshold p-value criteria, ranging from p-value
of 1E-8 to 1E-1. Shown are the total numbers of SNPs that we identified
for each threshold criteria, which are associated with risk for T2D or AD.
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Table 2
Genes associated with GWAS significant T2D SNPs.

(A) Genes known to associate with T2D

(B) Genes not currently
associated with T2D

Gene No. of SNPs Gene No. of SNPs Gene No. of SNPs Gene No. of SNPs
CDKAL1 98 KCNQ1 10 KCNJ11 2 KIF11 16
FTO 86 HNF1B 6 TLE1 1 Y_RNA 5
TCF7L2 66 IDE 6 ABCC8 1 SNRPGP16 4
THADA 63 SLC30A8 6 COBLL1 1 AC068138.1 3
WEFS1 51 CDKN2B 4 HHEX 1 ZBED3-AS1 2
IGF2BP2 43 DGKB 4 UBE2E2 1 CTD-2021H9.2 2
JAZF1 16 ARAP1 3 MTNR1B 1 RPSAP52 2
ADCY5 15 IGF2BP2 3 PROX1 1 AC022431.2 1
PPARG 11 ANK1 2 SUGP1 1 AL161652.1 1
ADAMTS9-AS2 11 ZMIZ1 2 VPS33B 1
TCF7L2 10 PPARG 2 LOC646736 1

SNPs that are associated with risk for T2D at a p-value cut-off threshold criteria of 1E-8 were analyzed using a large eQTL dataset of brain tissues to em-
pirically identify genes whose expression levels were influenced by the AD SNPs. Presented are cis-eSNPS annotations based on cis-qQTL analysis. Shown
are genes whose expression in the peripheral tissues (e.g., omental and subcutaneous adipose and liver tissues) are associated with the GWAS significant
T2D SNPs. (A,B) Segregation of annotated genes to those that are known to associate with T2D (A), and those are not currently associated with T2D (B).

SNPs are associated with the expression regulation of 42
known genes; the remaining 95 SNPs are not associated with
gene expression regulations. The 42 genes which could be
modulated by T2D SNPs are shown in Table 2. Most of these
genes are modulated by multiple T2D SNPs (Table 2A and
2B). Moreover, among the 42 genes that are associated with
the T2D SNPs, 31 genes have already been related to T2D
(Table 2A), while the published literature has not yet asso-
ciated the remaining 11 genes with T2D (Table 2B).

Similarly, at a GWAS threshold selection p-value crite-
rion of 1E-8, we identified 356 AD SNPs. Among these, 267
SNPs are associated with gene expression regulation of 50
known genes, and 80 SNPs are not associated with gene ex-
pression regulation. Similarly to our observation with the
T2D SNPs, most of the genes we found associated with the
AD SNPs are also modulated by multiple AD-SNPs (Table 3A
and 3B). Among the 50 genes that are associated with the
AD-SNPs, 29 genes have been related to AD (Table 3A) and
the remaining 21 genes have not yet been associated with
T2D (Table 3B).

Table 3
Genes associated with GWAS significant AD SNPs.

3.2. Overlap of T2D and AD GWAS SNPs

We hypothesized that T2D and AD share common genetic
etiology. Given that detailed results from powerful meta-
GWAS studies with large sample sizes on T2D and AD are
publicly available, our hypothesis could be directly tested
by examining whether the overlap of significant GWAS SNPs
for T2D and AD are greater than random chance. There-
fore, we retrieved GWAS summary statistics (e.g., association
p-values and directions) for T2D from the DIAGRAM con-
sortium study and for AD from the IGAP study. We then
filtered the summary statistics using multiple GWAS genetic
association p-values, ranging from 1E-8 to 1E-1, as cutoff
selection criteria and identified, for each of the p-value se-
lection criterion, SNPs that are associated with risk for T2D
or for AD (Table 1). Among the ~2 million tested in both T2D
and AD GWAS studies, the proportion of associated SNPs at
any given p-value threshold was greater than alpha (p=0.05)
level, suggesting genetic signals underlying these 2 dis-
eases. For example, at p-value <1E-3 threshold, 8,265 SNPs

(A) Genes known to associate with AD

(B) Genes not currently associated with AD

Gene No. of Gene No. of Gene No. of Gene No. of Gene No. of
SNPs SNPs SNPs SNPs SNPs

PICALM 31 APOE 5 GAB2 1 CLPTM1 13 NYAP1 1
MS4A4A/4E|6A|6E 28 SORL1 5 GLIS3 1 AP001257.1 6 ANKRD55 1
CD2AP 24 APOC1 3 MTHFD1L 1 BCAM 5 APOC1P1 1
TOMM40 23 BCL3 3 PDE7B 1 GULOP 3 CEACAM16 1
MS4A2 15 CLU 3 SLC24A4 1 HMHA1 3 CR2 1
PVRL2 13 PTK2B 3 SPON1 1 RNU6-560P 3 EXOC3L2, MARK4 1
APOC2/APOC4 12 ABCA7 2 ZCWPW1 1 XXbac-BPG254F23.7 3 NYAP1 1
MARK4 11 PVR 2 CEACAM19 3 PILRA 1
BIN1 7 CD33 1 AL355353.1 2 RNUG6-560P 1
CR1 7 CTNNA2 1 GPR111 2 snoU13 1
EPHA1/EPHA1-AS1 7 FERMT2 1 snoZ6 2

SNPs that are associated with risk for AD at a p-value cut-off threshold criteria of 1E-8 were analyzed using a large eQTL dataset of brain tissues to em-
pirically identify genes whose expression levels were influenced by the T2D SNPs. Presented are cis-eSNPS annotations based on cis-qQTL analysis. Shown
are genes whose expressions in the brain tissues (e.g., frontal cortex, visual cortex and cerebellum) are associated with the GWAS significant AD SNPs.
(A,B) Segregation of annotated genes to those that are known to associate with AD (A), and those are not currently associated with AD (B). (A,B) The “no.
of SNPs” reflects the number of SNPs that are associated with expression levels of the specific genes.
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Table 4
Overlap of GWAS signals for AD and T2D.

(A)

Comparison GWAS p-value Overlap OR Overlap Number of N of overlap SNPs % SNPs with p-Value of risk
threshold p-value overlap SNPs with consistent consistent allele consistency

risk allele risk allele

AD vs. T2D 1.00E-06 2.87 2.95E-01 1 0 0 1.00E+00
1.00E-05 4.8 1.05E-02 4 0 0 1.25E-01
1.00E-04 9.94 4.45E-18 27 2 741 5.65E-06
1.00E-03 3.19 1.02E-15 68 7 10.29 7.39E-12
1.00E-02 1.48 6.93E-28 927 395 42.61 7.66E-06
1.00E-01 1.04 1.70E-10 35,719 18,085 50.63 1.73E-02

(B)

GWAS p-value Consistent risk allele Divergent risk allele

threshold Number of Overlap OR Overlap p-value Number of Overlap OR Overlap p-value

overlap SNP overlap SNP

1.00E-06 0 - 1 1 8.25 1.15E-01

1.00E-05 0 - 1 4 13.18 2.86E-04

1.00E-04 2 133 5.65E-06 25 21.68 1.31E-24

1.00E-03 7 0.46 7.39E-12 61 5.82 2.72E-26

1.00E-02 395 1.2 7.66E-06 532 172 1.43E-29

(A) Meta-GWAS result statistics were retrieved from IGAP (AD study) and Diagram (T2D study) databases, and filtered by meta-analysis p-values to iden-
tify shared T2D/AD SNPs that are found in both listings. The following information is presented: overlap odds ratio, Fisher test p-value of overlapping, the
number of overlapping SNPs, the number of SNPs with the same risk allele in disease GWAS, the percentage of overlapping SNPs with the same risk allele
in disease GWAS over total number of overlapping SNPs, the binomial test p-value of consistent direction among overlapping significant SNPs. (B) We
stratified the SNPs tested in both AD and T2D meta-GWAS by the risk allele consistency regardless of associated p-value. A SNP where the same allele was
associated with a higher risk for both AD and T2D was termed consistent risk allele SNP. Otherwise, they are referred to as divergent risk allele SNP. Shown
are the number of overlapping SNPs with consistent (or divergent) risk alleles, corresponding overlap odds ratio, and p-value of overlapping.

and 6,140 SNPs were associated with T2D and AD, respec-
tively (Table 1).

For each of the p-value selection criteria, we over-
lapped the identified T2D and AD GWAS SNPs in order to
identify shared T2D/AD SNPs that are associated with risk
for both T2D and AD (Table 4A). For example, at p-val-
ue <1E-3 threshold, 68 SNPs were associated with both
diseases, which is significantly larger than random chance
(overlap p-value of 1.02E-15 and overlap odds ratio = 3.19).
Our observation that the overlapping of T2D and AD GWAS
SNPs are significant across multiple p-value selection cri-
teria suggests that T2D and AD may share genetic etiological
risk factors. In contrast to our observation, previous inves-
tigations demonstrated that two large disease GWAS may
show no significant overlap of shared SNPs. For example,
GWAS from obesity and age of menopause did not show a
significant overlap (Locke et al., 2015). Thus, our observed
statistical significance for the presence of shared SNPs that
are associated with both T2D and AD is not likely to be a
chance finding of simply overlapping GWAS of unrelated
diseases.

3.3. Association direction of shared T2D and
AD SNPs

The shared T2D/AD SNPs can be segregated into shared
SNPs with consistent risk alleles (the risk allele for T2D is
also the risk allele for AD) and those with divergent risk
alleles (the risk allele for T2D is different from the risk allele
for AD). Our working hypothesis is that the presence of
shared T2D/AD SNPs with consistent risk alleles would con-
tribute to the correlation between these 2 diseases’

incidence. Thus, we stratified the shared T2D/AD SNPs into
the consistent risk allele SNP and divergent risk allele SNP
subcategories. Regardless of GWAS test p-values criteria, if
one allele of an SNP was associated with higher risk of both
AD and T2D, the SNP was categorized as a consistent risk
allele SNP; otherwise, the SNP was categorized as a diver-
gent risk allele SNP.

At a GWAS p-value <1E-2, we found that 395 shared SNPs
have the same risk allele for both AD and T2D (overlap p-val-
ue of 7.66E-6, overlap OR = 1.2, Table 4B). Our observation
is consistent with a common genetic basis underlying both
diseases. Interestingly, at a GWAS p-value <1E-2, we ob-
served 532 shared SNPs that have divergent risk alleles for
AD versus T2D (overlap p-value of 1.43E-29, overlap
OR =1.72, Table 4B). This suggests that some of the T2D/AD
shared SNPs may contribute to one of the diseases without
necessarily contributing to the other.

Our observation that shared T2D/AD SNPs can be sub-
divided into shared SNPs with consistent risk alleles versus
shared SNPs with divergent risk alleles can also be seen in
other diseases. For example, consistent with the strong
linkage between T2D and coronary artery disease (CAD)
(Wang et al., 2014), we observed an extensive overlap
between T2D and CAD GWAS signals (Table 5). For example,
at GWAS p-value <1E-4 threshold, 59 SNPs were associ-
ated with both T2D and CAD (p-value of 7.97E-65 and the
overlap OR =31.39). We found that 57 of the shared
T2D/CAD SNPs are characterized by consistent risk alleles
(96.61; overlap p-value of 6.14E-15, Table 5). Our observa-
tion suggests that the investigation of shared GWAS risk SNPs
should be further delineated into the association direc-
tion of the shared SNPs.
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Table 5
Overlap of GWAS signals for T2D vs. CAD.

Comparison GWAS p-value Overlap OR Overlap p-value No. of overlap No. of overlap SNPs % SNPs with p-Value of risk

threshold SNPs with consistent consistent allele consistency
risk allele risk allele

T2D vs. CAD 1.E-08 90.42 6.21E-06 3 3 100 2.50E-01
1.E-07 330.39 1.29E-32 15 15 100 6.10E-05
1.E-06 254.24 1.41E-48 24 24 100 1.19E-07
1.E-05 102.54 4.50E-44 27 27 100 1.49E-08
1.E-04 31.39 7.97E-65 59 57 96.61 6.14E-15
1.E-03 8.41 9.02E-117 215 188 87.44 7.00E-31
1.E-02 211 5.02E-157 1,695 1446 85.31 5.75E-205
1.E-01 115 1.07E-138 47327 31,648 66.87 9.88E-324

Meta-GWAS result statistics retrieved from DIAGRAM (T2D) and cardiogramplusC4D (CAD) databases were filtered by multiple meta-analysis p-values.
Filtered SNPs were overlapped across T2D and CAD. The T2D vs. CAD comparison shows, across multiple GWAS p-values, the total number of overlapping
shared T2D/CAD SNPs, the corresponding overlapping odds ratio and Fisher test p-value of overlapping, which revealed overlapping of the shared SNPs
was greater than random chance. Also shown is the number of overlapping T2D/CAD SNPs with consistent risk allele, percentage of overlapping SNPs with
the same risk allele in disease GWAS over total number of overlapping SNPs, and binomial test p-value of consistent direction among overlapping signif-

icant SNPs.

3.4. Genes influenced by the shared T2D/AD SNPs

Shared T2D/AD SNPs may undergo complicated path-
ways and lead to disease risk. Identifying the genes
influenced by such shared SNPs would be the key step elu-
cidating the SNPs’ function and pathogenic pathways on T2D
and/or AD. To investigate potential functional impacts of
T2D/AD shared SNPs, we analyzed the 927 shared T2D/AD
SNPs we identified using a “relax” p-value threshold crite-
rion of 1E-2 for GWAS genetic association with T2D and AD
(Table 4). This is because the effect size attributable to in-
dividual genetic variants for a given complex disorder is
typically modest, suggesting that individual genetic vari-
ants may only explain a very small amount of the genetic
risk and heritability of complex disorders (Manolio and
Collins, 2007). Genetic contributions to complex condi-
tions, such as T2D and AD, are likely derived from a large
number of genetic causal variants, each contributing a small
genetic risk. Thus, our choice of using a T2D/AD shared SNPs
generated from a relax cutoff genetic association p-value of
1E-2 will comprehensively capture SNPs with small effect
sizes on T2D and AD.

Among the 927 shared T2D/AD SNPs that we identi-
fied, 395 are characterized by having consistent risk alleles
and 532 are characterized by having divergent risk alleles
(Table 4). We annotated individual shared T2D/AD SNPs char-
acterized by consistent and divergent risk alleles using the
ANNOVAR (Annotated Variation) software (Wang et al.,
2010). Shared T2D/AD SNPs with consistent or divergent risk
alleles are listed in Supplementary Tables S1 and S2, re-
spectively. Also shown for each of the shared T2D/AD SNPs
are the corresponding p-values associated with risk for T2D
and AD, the identity of risk alleles for T2D and/or AD, and
the resultant gene annotations from ANNOVAR analyses for
each of shared T2D/AD SNPs (Supplementary Tables ST and
S2). Since causal genetic variants affecting common mecha-
nisms can be inferred by examining physical connections
between proteins encoded in disease-associated region
(Rossin et al., 2011), we used the DAPPLE (Disease Associ-
ation Protein-Protein Link Evaluator) software (Rossin et al.,
2011) to identify proteins that are known to physically

interact with each of the annotations generated from
ANNOVAR from shared T2D/AD SNPs. Results from the
DAPPLE analysis produced an additional 190 genes that are
functionally connected to T2D/AD with consistent risk alleles
(Supplementary Table S3) and an additional 385 genes that
are functionally connected to shared T2D/AD SNPs with di-
vergent risk alleles (Supplementary Table S4).

3.5. Functional annotation of the genes influenced by share
T2D and AD GWAS signals

Based on our working hypothesis that individuals with
the presence of these shared T2D/AD genetic etiologies may
contribute to the development of T2D in these individu-
als, as well as the development of AD over the long-term,
we investigated the potential functional impacts of T2D/
AD SNPs with consistent risk alleles. Gene annotations for
each of the shared T2D/AD SNPs with consistent risk alleles
were generated using ANNOVAR and DAPPLE. The com-
bined gene annotation from ANNOVAR and DAPPLE were
assessed for functional pathway enrichment by assessing
the corresponding annotated genes for gene enrichments
among known KEGG functional pathways. To evaluate the
significance of the pathways generated in the second round
“real run” DAVID analysis, 20 “decoy runs” of DAVID were
performed, using the initial gene list plus equal numbers
(to that of “additional genes”) of randomly selected human
genes. The lowest p-value obtained in the 20 “decoy runs”
was 1.29E-3, and was chosen as the Benjamini-corrected
p-value cut-off to determine “significant” KEGG pathway
enrichment.

We found significant enrichment of the annotated genes
in 14 KEGG pathways (Table 6). For each of these KEGG path-
ways, information regarding the total number of genes in
the pathway, the number (and the name) of annotated genes
found in the pathway, fold enrichment and the Benjamini-
corrected p-value for enrichment are shown in Table 5.
Notably, we observed that 5 of the enriched KEGG path-
ways listed in Table 6 pertain to immune responses (e.g., Fc
gamma R-mediated phagocytosis and chemokine signal-
ing), cell signaling (e.g., MAPK and Wnt signaling) and
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Table 6
KEGG functional enrichment analysis.
Term Total No. of genes Fold Benjamini-corrected  Genes
pathway modulated by enrichment p-value
size the shared
T2D/AD SNPs
hsa04540: 89 20 8.4 8.2E-11 PRKCA, EGFR, GNAI3, GNAI2, GRB2, ADCY8, GNAI1,
Gap junction GNAT11, ADCY5, PRKCG, SRC, PRKX, PRKCB,
PRKACG, TUBB, TJP1, PRKACA, PRKACB, TUBA1A,
HTR2A
hsa04916: 99 19 72 2.0E-09 PRKCA, GNAI3, GNAI2, ADCY8, GNAI1, ADCY5,
Melanogenesis CREBBP, PRKCG, TCF7L2, PRKX, CTNNB1, PRKCB,
PRKACG, EP300, CAMK2D, CALM3, PRKACA,
PRKACB, CAMK2A, CALM2, CALM1
hsa04720: 68 15 8.2 4.3E-08 PRKCA, ADCY8, CREBBP, PRKCG, PRKX, PRKCB,
Long-term potentiation PRKACG, EP300, CAMK2D, CALM3, PRKACA,
PRKACB, PPP3CA, CACNA1C, CAMK2A, CALM2,
CALM1
hsa04912: 98 17 6.5 8.1E-08 PRKCA, EGFR, GRB2, ADCY8, GNA11, ADCY5, SRC,
GnRH signaling pathway PRKX, PRKCB, PRKACG, PTK2B, CAMK2D, CALM3,
PRKACA, PRKACB, CACNA1C, CAMK2A, CALM2,
CALM1
hsa05414: 92 14 5.7 9.3E-06 ACTB, ACTC1, ADCY8, ADCY5, CACNB1, TPM2,
Dilated cardiomyopathy PRKX, PRKACG, ACTG1, ITGAS8, RYR2, PRKACA,
PRKACB, CACNA1C
hsa04666: 95 14 55 1.2E-05 PRKCA, DNM3, VAV3, PRKCG, ARPC5, VAV2, TTLL3,
Fc gamma R-mediated PRKCB, ARPC1A, ARPC3, ARPC2, SCIN, PLA2G4F,
phagocytosis DNM2
hsa04020: 176 18 3.8 3.1E-05 PRKCA, EGFR, ADCY8, GNA11, PRKCG, PRKX,
Calcium signaling pathway PRKCB, PRKACG, PTK2B, CAMK2D, CALM3, RYR2,
PRKACA, PRKACB, PPP3CA, CACNA1C, CAMK2A,
CALM2, CALM1, HTR2A
hsa04062: 187 18 3.6 6.5E-05 GNAI3, VAV3, GNAI2, GRB2, ADCY8, GNAI1, ADCY5,
Chemokine signaling PF4V1, VAV2, PRKX, PRKCB, PRKACG, PTK2B,
pathway ARRB1, TIAM1, JAK2, PRKACA, PRKACB
hsa05110: 56 10 6.7 1.0E-04 PRKCA, ACTG1, PRKACG, ACTB, TJP1, PRKCG,
Vibrio cholerae infection PRKACA, PRKACB, PRKX, PRKCB
hsa04310: 151 15 3.7 2.8E-04 PRKCA, TBL1XR1, CREBBP, PRKCG, TCF7L2, PRKX,
Whnt signaling pathway PRKCB, CTNNBT1, PRKACG, EP300, CAMK2D,
PRKACA, PRKACB, PPP3CA, CAMK2A
hsa04010: 267 20 2.8 4.5E-04 PRKCA, EGFR, TAOK2, FGF14, GRB2, CACNB1,
MAPK signaling pathway PRKCG, SRF, DAXX, FLNA, PRKX, PRKCB, PRKACG,
ARRB1, PRKACA, PPP3CA, PRKACB, CACNA1C,
HSPAS, PPP5C
hsa04914: 86 11 4.8 5.1E-04 HSP90AB1, PRKACG, GNAI3, GNAI2, GNAI1, ADCYS,
Progesterone-mediated ADCYS5, PRKACA, PRKACB, CDK2, PRKX
oocyte maturation
hsa04114: 110 12 41 8.4E-04 AR, ADCY8, ADCY5, PRKX, CDK2, PRKACG,
Oocyte meiosis CAMK2D, CALM3, PRKACA, PRKACB, PPP3CA,
CAMK2A, CALM2, CALM1
hsa04270: 112 12 4 8.9E-04 PRKCA, ADCY8, ADCY5, GNA11, PRKCG, PRKX,
Vascular smooth muscle PRKCB, PRKACG, CALM3, PRKACA, PRKACB,
contraction CACNA1C, CALM2, CALM1

The analysis was conducted using combined gene annotations from ANNOVAR and DAPPLE that are generated from shared T2D/AD SNPs with consistent
risk alleles. The KEGG pathway analysis was performed using the DAVID tool (http://david.abcc.ncifcrf.gov/). DAVID determines the significance of a pathway
by Fisher’s exact test, which directly takes into account the pathway size. Fisher's exact test has 4 build-in parameters: total number of genes in the genome,
total number of genes in the input gene set, the number of genes in the genome belonging to a specific KEGG pathway, and the number of genes in the
input gene set that belong to the specific KEGG pathway. Moreover, we adopted a decoy run-based procedure to determine the truly significant path-
ways: 20 decoy runs were executed in addition to the “real” run. This procedure fully eliminates any remaining unwanted confounding effects, due to
pathway size or other conceivable factors. Listed are 14 KEGG pathways with significant enrichments (Benjamini-corrected p-value <1.29E-3) of the an-
notated genes. Shown are the total number of genes in the pathway, the number (and the name) of annotated genes found in the pathway, fold enrichment
and Benjamini-corrected p-value for enrichment.

neuronal plasticity (e.g., long-term potentiation), and dys-
function of these processes are known to contribute to both
T2D and AD (Balietti et al., 2012; Bordonaro, 2009; Cruz et al.,
2013; Evans et al., 2002; Kim and Choi, 2010; Lee et al., 2010;

Rios et al., 2014; Wang et al., 2013).

4. Discussion

In this study, we employed a systems biology approach
in order to examine shared genetic risk factors and func-
tional categories between AD and T2D. We integrated
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large-scale GWAS, pathway and gene ontology data, eQTL,
co-expression networks, and regulatory elements.

We used multiple GWAS genetic association p-values
(ranging from 1E-8 to 1E-2) as cutoff criteria and identi-
fied SNPs that are associated with AD or T2D for specific
GWAS p-value thresholds. An interesting finding from this
analysis is the identification of 661 SNPs that meet the gen-
erally accepted criterion (GWAS p-value threshold of 1E-8)
of GWAS significance for association with risk for T2D. We
found these SNPs are associated with the expression reg-
ulation of 31 genes that have already been associated with
T2D and 11 genes that have not yet been associated with
T2D in the published literature. Similarly, we found 356 SNPs
that meets the generally accepted criterion (GWAS p-value
threshold of 1E-8) of GWAS significance for association with
risk for AD. These AD-associated SNPs are associated with
the expression regulation of 29 genes that have been related
to AD and 21 genes that have not yet been associated with
T2D. Similarly, at a GWAS threshold selection p-value cri-
terion of 1E-8, we identified 356 AD SNPs. Among these,
267 SNPs are associated with gene expression regulation of
50 known genes, and 80 SNPs are not associated with gene
expression regulation. Similar to our observation with the
T2D SNPs, most of the genes we found associated with the
AD SNPs are also modulated by multiple AD-SNPs. Among
the 50 genes that are associated with the AD-SNPs, 29 genes
have been related to AD and 21 genes have not yet been as-
sociated with T2D (Table 3B). Collectively, our genetic
association evidence is consistent with published informa-
tion regarding the genetics and/or molecular pathogenic
etiologies underlying T2D and AD. Moreover, our observa-
tion revealing additional genes not currently associated with
T2D or AD could serve as novel molecular targets for future
investigations.

Comparing SNPs that are associated with risk for T2D
with SNPs that are associated with risk for AD, we ob-
served significant overlapping of T2D and AD GWAS SNPs
across multiple p-value selection criteria (Table 4). Our ob-
servation provides the first evidence suggesting that T2D
and AD may share genetic etiological risk factors. In contrast
to our observation, previous investigations demonstrated
that two large disease GWAS may show no significant
overlap of shared SNPs. For example, GWAS results on
obesity and age of menopause did not show a significant
overlap (Locke et al., 2015). Thus, our observed statistical
significance for the presence of shared SNPs that are asso-
ciated with both T2D and AD is likely not a chance finding
of simply overlapping GWAS of unrelated diseases.

We note, however, that the shared T2D/AD SNPs can be
stratified into shared SNPs with consistent risk alleles or with
divergent risk alleles (Table 4, Supplementary Tables S1 and
S2). Shared SNPs with consistent risk alleles would repre-
sent genetic etiologic factors underlying pathogenic
mechanisms that are common for both T2D and AD, and that
the presence of these shared T2D/AD genetic predisposi-
tion factor(s) in a subset of individuals may mechanistically
contribute to the development of T2D in these individuals,
as well as to the development of AD over the long-term. Con-
sistent with this, our evidence suggests that genes that are
directly and indirectly modulated by shared T2D/AD SNPs
with consistent alleles are significantly enriched for multiple

functional pathways pertaining to immune responses (e.g.,
Fc gamma R-mediated phagocytosis and chemokine sig-
naling), cell signaling (e.g., MAPK and Wnt signaling), and
neuronal plasticity (e.g., long-term potentiation) (Table 6).
Abnormal, hyper-inflammatory responses (Lee et al., 2010),
activation of MAPK signaling (Evans et al., 2002; Kim and
Choi, 2010), reductions in Wnt signaling (Bordonaro, 2009;
Rios et al,, 2014), and neuronal plasticity dysfunction (Balietti
et al,, 2012; Wang et al., 2013) are known to contribute to
both T2D and AD pathogenesis. Thus, our observation sug-
gests that common genetic predispositions (e.g., SNPs with
consistent risk alleles) in T2D and AD underlying anomalies
to these pathogenic pathways could contribute to the el-
evated risks of subjects with T2D to eventually develop AD.
It is important to note that a large number of the shared
T2D/AD GWAS SNPs we identified are characterized by di-
vergent risk alleles in the two diseases. For individual shared
T2D/AD SNPs with divergent alleles, one of the allelic forms
may contribute to one of the diseases (e.g., T2D), but not
necessarily to the other (e.g., AD), or vice versa. Thus, GWAS
studies comparing two diseases aiming to identify how
common genetic variants might mechanistically contrib-
ute to the two diseases not only need to identify overlapping
SNPs that are associated with risks for both disease, but also
need to carefully consider the risk allele consistency.
Current T2D treatments are generally designed to target
pathologic processes, such as hyperglycemic, that under-
lie or are related to key T2D-type peripheral metabolic
impairment phenotypes. Since subjects with T2D are at
higher risk to develop AD (Vagelatos and Eslick, 2013), there
is a general anticipation that such T2D interventions may
also reduce the risk of these subjects for eventually devel-
oping AD dementia. However, recent evidence suggesting
that interventions designed to modulate metabolic re-
sponses in T2D may not necessarily reduce the risk of T2D
subjects to develop AD. In particular, a large clinical trial
demonstrated that tight control of peripheral blood glucose
does not improve cognitive (or other health) outcomes in
older persons with peripheral insulin resistance (Launer
et al,, 2011). Thus, there is a great need to develop novel
strategies to interfere with the risk of individuals with T2D
to development of AD dementia. Collectively, our observa-
tions suggest that, among T2D subjects with shared SNPs
having consistent risk alleles for T2D and AD as common
genetic predisposition factors for both diseases, pathogenic
pathways mediated by these shared SNPs may mechanis-
tically contribute to the risk of these subjects to eventually
develop AD. Our evidence provides the much needed in-
formation for the design of future novel therapeutic
approaches, specifically targeting a subpopulation of T2D
subjects with genetic disposition to AD, to simultaneously
modulate T2D phenotypes and risk for AD dementia,
Some of the pathogenic mechanisms that are associ-
ated with T2D [e.g., inflammation (De Felice and Ferreira,
2014) and reduced insulin sensitivity (Watson and Craft,
2003)] are also associated with AD. Thus, it is conceivable
that intervention strategies originally developed to target
T2D phenotypes might also be useful for treating AD. In-
terestingly, recent clinical evidence suggests that treatment
with insulin, particularly via an intranasal administration
protocol to promote delivery of insulin to the central nervous
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system, is effective in improving cognitive functions in pa-
tients with mild to moderate AD or, in patients with amnestic
mild cognitive impairment who are at high risk for devel-
oping frank AD dementia, is effective in protecting against
cognitive decline (Craft et al., 2012). However, other studies
with rosiglitazone and pioglitazone that are known for their
insulin-sensitizing and anti-inflammatory effects failed to
demonstrate a promotion of cognitive function in subjects
with probable AD (Miller et al., 2011), While more studies
will be necessary to investigate why certain anti-T2D strat-
egies might (or might not) be useful for treating AD, it is
conceivable that these investigations should be focused on
effects of individual interventions on the appropriate sub-
population of MCI or probable AD cases. Our observation
of shared T2D/AD SNPs with consistent risk alleles under-
lying pathogenic processes that are related to hyper-
inflammatory responses, activation of MAPK signaling,
reductions in Wnt signaling, and dysfunctions in neuronal
plasticity provides novel genetic predisposition factors for
selection of the most appropriate MCI/pre-AD subjects for
clinical investigations of interventions targeting these patho-
genic processes.
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