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RESULTS

T2D-specific patient network
Wedeveloped and applied an unsupervised, topology-based approach
that uses EMR-derived clinical data to infer a patient-patient similarity
network as the computational model to represent a complex patient
population. In the resulting patient-patient network, patients (nodes)
are connected to one another by edges if they exhibit clinical similarity
across many clinical dimensions (for example, laboratory tests). Pa-
tients who exhibited very high degrees of similarity were grouped into
single nodes (see Materials and Methods). We identified two distinct
clusters in the resulting patient-patient network (Fig. 1A) that con-
tained 3889 and 7321 unique patients (the left and right clusters, re-
spectively). The left cluster (n = 3889) was significantly enriched [least
absolute shrinkage and selection operator (LASSO), P < 0.05] for en-
docrine andmetabolic diseases, immunity disorders, infectious disease,
mental illness, diseases of the circulatory and genitourinary systems,
and symptoms/signs/ill-defined conditions and factors that influence
health status. The right cluster (n= 7321) was significantly enriched for
complications of pregnancy, respiratory diseases, and unclassified E
code (external causes of injury) (15). Next, we identified T2D patients
in the network to evaluate the heterogeneity of T2D patient groups
across the patient-patient topology. We used a previously validated
EMRs and genomics (eMERGE) network electronic phenotyping
algorithm (16, 17) to define the T2D phenotype (n = 2551) and eval-
uated the network for topological enrichment of T2D patients. The red
areas in Fig. 1A indicate that T2D patients are enriched in that partic-
ular location in the network, where the color scheme reflects the P value
from hypergeometric enrichment analysis of topological enrichment
(see Materials and Methods). We observed multiple distinct clusters
or subnetworks of T2D patient enrichment.

We then rebuilt the patient-patient network, using the same topo-
logy analysis pipeline, with only the 2551 T2D patients identified with
the T2D electronic phenotyping algorithm. The filtering step resulted
in 73 clinical features that were used for topological inference of the
patient-patient similarity network (table S1). From the resulting patient-
patient network, we identified three completely segregated clusters with
762 (subtype 1), 617 (subtype 2), and 1096 (subtype 3) patients, respec-
tively (Fig. 1B).We evaluated the network for enrichment of gender and
did not observe any elevated enrichment of male or female patients in
any of the clusters, suggesting that gender is not an organizing factor in
the topology.

To assess the reproducibility of the T2D subtypes identified from
the patient-patient network, we examined the performance on ran-
dom samplings of training and test sets. First, we randomly split the
2551 T2D patients into two groups, with two-thirds as a training set
and one-third as a test set. We then rebuilt the patient-patient network
using the same 73 clinical features, distance metrics, and filter func-
tions from the topology analysis pipeline. These steps were repeated
10 times. Last, we calculated the average of the precision [positive
predictive value (PPV)] and recall (sensitivity) for the 10 tests, for train-
ing and test sets individually. The average precisions were 100, 91,
and 98%, and the average recalls were 99, 96, and 94% for subtype 1,
subtype 2, and subtype 3, respectively, in the training sets. In the test
sets, the average precisions were 100, 90, and 97%, and the average
recalls were 99, 96, and 93% for subtype 1, subtype 2, and subtype
3, respectively. The overall accuracy was 96% for both the training sets
and test sets.
www.Science
Significant characteristics and clinical features specific to
T2D subtypes
We identified 33 clinical variables significantly specific to subtype
1 (n = 761) compared to both of the two other subtypes individually
or combined. Three of these variables overlapped with clinical variables
that were also specific to subtype 3, resulting in 29 variables unique to
subtype 1. In addition, we identified 3 and 11 clinical variables signifi-
cantly specific to subtype 2 (n = 617) and subtype 3 (n = 1096), respec-
tively, with one shared variable. The only variable the three subtypes
had in common was insulin administration (Table 1, A to C).

Patients in subtype 1 were the youngest (59.76 ± 0.45 years) and
were notable for features classically associated with T2D, such as the
highest BMI (33.07 ± 0.29 kg/m2) and highest serum glucose concen-
trations at point-of-care testing (POCT) (193.69 ± 11.45 mM). Pa-
tients in subtype 1 had the lowest complete blood count, including
the lowest white blood cell counts (5.32 ± 0.57 × 109/liter), neutrophil
counts (2.50 ± 0.58 × 109/liter), eosinophil counts (0.09 ± 0.02 × 109/liter),
and mean platelet volumes (9.97 ± 0.37 fl). In addition, patients in
subtype 1 had a considerably lower platelet count, with more than
50% of patients below the reference range (98.36 ± 17.86 × 109/liter).
Adding to this curious hematological finding was a prolonged pro-
thrombin time at POCT (29.18 ± 3.64 s), which corresponded to an
elevated international normalized ratio (INR) (2.57 ± 0.34). Patients in
subtype 1 also displayed the highest serum albumin (4.27 ± 0.02 g/dl)
and lowest creatinine (1.0 ± 0.02 mg/dl) levels. Although these patients
had better kidney function compared to those in the other two sub-
types, estimated glomerular filtration rate (GFR) was below the reference
range (72.26 ± 1.47 ml/min/1.73 m2; range, 17.3 to 149.7). In addi-
tion, patients in subtype 1 had the highest total blood CO2 (26.6 ±
0.13 mmHg) and fewer respirations per minute (16.65 ± 0.16), and
lower prescription rates for calcium channel blockers (CCB; 19.55%),
angiotensin II receptor blockers and angiotensin-converting enzyme
inhibitors (ARB/ACEI, 48.16%) (commonly prescribed for hypertension),
dipeptidyl peptidase 4 inhibitor (DPP4, 1.05%), and metformin (MET,
6.43%) (the last two are both prescribed for T2D).

Patients in subtype 2 had the lowest weight (85.17 ± 1.14 kg) com-
pared with those in the other subtypes. Patients in subtype 3 had the
highest systolic blood pressure (135.7 ± 0.7 mmHg), serum chloride lev-
els (102.03 ± 0.11 mEq/liter), and troponin I levels (0.36 ± 0.09 mg/liter)
and were more often prescribed ARB/ACEI (62.96%) for the treatment
of hypertension and statins (56%) for cholesterol reduction. A full list of
variables that were significantly specific to each subtype is provided in
Table 1 (A to C).

Disease comorbidity associated withT2D subtypes
We applied the disease Clinical Classifications Software (CCS; see Ma-
terials and Methods) (18) on more than 7000 ICD-9-CM (International
Classification of Diseases, Ninth Revision, Clinical Modification) diagno-
sis codes in our cohort to aggregate the large number of ICD-9-CM codes
into a manageable number of either 281 single-level disease categories
or 18 level 1 (broader) categories in the multilevel disease categories.
By adjusting patient age, gender, and self-reported race, we found that
the patients in subtype 1 (n = 762) were more likely to associate with the
following ICD-9-CM codes: diseases in the “other upper respiratory in-
fections” [relative risk (RR), mean, 1.68; range, 1.34 to 2.11]; immuni-
zation and screening for infectious disease (RR, 1.65; range, 1.32 to
2.06); diabetes mellitus with complications (RR, 1.50; range, 1.22 to
1.84); other skin disorders (RR, 1.41; range, 1.13 to 1.76); and blindness
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and vision defects (RR, 1.32; range, 1.04
to 1.67), than were the other two subtypes
(Table 2A). Patients in subtype 2 (n = 617)
were more likely to associate with diseases
of cancer of bronchus: lung (RR, 3.76; range,
1.14 to 12.39); malignant neoplasm with-
out specification of site (RR, 3.46; range,
1.23 to 9.70); tuberculosis (RR, 2.93; range,
1.30 to 6.64); coronary atherosclerosis and
other heart disease (RR, 1.28; range, 1.01 to
1.61); and other circulatory disease (RR, 1.27;
range, 1.02 to 1.58), thanwere the other two
subtypes (Table 2B). Patients in subtype 3
(n = 1096) were more often diagnosed with
HIV infection (RR, 1.92; range, 1.30 to 2.85)
and were associated with E codes (that is,
external causes of injury care) (RR, 1.84;
range, 1.41 to 2.39); aortic and peripheral
arterial embolism or thrombosis (RR, 1.79;
range, 1.18 to 2.71); hypertensionwith com-
plications and secondary hypertension (RR,
1.66; range, 1.29 to 2.15); coronary athero-
sclerosis and other heart disease (RR, 1.41;
range, 1.15 to 1.72); allergic reactions (RR,
1.42; range, 1.19 to 1.70); deficiency and other
anemia (RR, 1.39; range, 1.14 to 1.68); and
screening and history of mental health and
substance abuse code (RR, 1.30; range, 1.07
to 1.58) (Table 2C).

Significant disease–genetic variant
enrichments specific to T2D subtypes
We next evaluated the genetic variants sig-
nificantly associated with each of the three
subtypes. Observed genetic associations and
gene-level [that is, single-nucleotide poly-
morphisms (SNPs) mapped to gene-level
annotations] enrichments by hypergeometric
analysis are considered independent of the
Fig. 1. Patient and genotype networks. (A)
Patient-patient network for topology patterns

on 11,210 Biobank patients. Each node repre-
sents a single or a group of patients with the
significant similarity based on their clinical
features. Edge connected with nodes indicates
the nodes have shared patients. Red color rep-
resents the enrichment for patients with T2D
diagnosis, and blue color represents the non-
enrichment for patients with T2D diagnosis.
(B) Patient-patient network for topology pat-
terns on 2551 T2D patients. Each node repre-
sents a single or a group of patients with the
significant similarity based on their clinical
features. Edge connected with nodes indicates
the nodes have shared patients. Red color rep-
resents the enrichment for patientswith females,
and blue color represents the enrichment for
males.
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Table 1. Clinical variables specific to subtypes. S-1, subtype 1; S-2, subtype 2; S-3, subtype 3; BMI, body mass index.
(A) Clinical variables significantly specific to T2D subtype 1
Clinical variables
 Mean or % subtype 1
www.S
Mean or % subtype 2
cienceTranslationalMed
Mean or % subtype 3
icine.org 28 October 20
P (1 versus 2 + 3)
15 Vol 7 Issue 311
S-1
311ra
S-2
174
S-3
Platelet count (109/liter)
 98.36 ± 17.86
 228.24 ± 2.90
 228.61 ± 2.45
 <0.0001
 Y
Urine protein concentration (mg/dl)
 51.19 ± 14.38
 152.67 ± 37.21
 219.98 ± 47.62
 0.0001
 Y
Lactate dehydrogenase (U/liter)
 193.35 ± 8.88
 231.03 ± 8.82
 251.34 ± 8.17
 <0.0001
 Y
Age (years)
 59.76 ± 0.45
 64.25 ± 0.50
 63.65 ± 0.38
 <0.0001
 Y
Blood urea nitrogen (mg/dl)
 16.69 ± 0.35
 19.38 ± 0.59
 19.52 ± 0.35
 <0.0001
 Y
Neutrophil count (109/liter)
 2.50 ± 0.58
 4.78 ± 0.12
 4.83 ± 0.09
 0.0024
 Y
White blood cell count (109/liter)
 5.32 ± 0.57
 7.28 ± 0.09
 7.46 ± 0.07
 0.001
 Y
Respirations
 16.65 ± 0.16
 17.50 ± 0.14
 17.62 ± 0.08
 <0.0001
 Y
Urine protein-to-creatinine ratio
 0.40 ± 0.09
 1.19 ± 0.26
 2.48 ± 0.45
 <0.0001
 Y
 Y
Serum creatinine (mg/dl)
 1.00 ± 0.02
 1.25 ± 0.07
 1.27 ± 0.04
 <0.0001
 Y
Eosinophil count (109/liter)
 0.09 ± 0.02
 0.19 ± 0.01
 0.20 ± 0.01
 0.0003
 Y
D
o
Blood protein total (g/dl)
 7.49 ± 0.03
 7.34 ± 0.04
 7.14 ± 0.03
 <0.0001
 Y
 Y
w
n
Serum albumin (g/dl)
 4.27 ± 0.02
 4.03 ± 0.03
 4.04 ± 0.02
 <0.0001
 Y
loa
Serum calcium (mg/dl)
 9.90 ± 0.02
 9.66 ± 0.03
 9.60 ± 0.02
 <0.0001
 Y
de
CO2 total
 26.60 ± 0.13
 26.05 ± 0.15
 26.16 ± 0.09
 0.0011
 Y
d f
Mean platelet volume (fl)
 9.97 ± 0.37
 8.98 ± 0.05
 8.97 ± 0.04
 0.008
 Y
rom
Prothrombin time* (s)
 29.18 ± 3.64
 14.10 ± 0.33
 14.13 ± 0.27
 0.0005
 Y
h 
INR*
 2.57 ± 0.34
 1.19 ± 0.03
 9.32 ± 0.41
 0.0005
 Y
ttp
BMI
 33.07 ± 0.29
 31.32 ± 0.30
 31.19 ± 0.02
 <0.0001
 Y
://s
Estimated GFR calculation (MDRD, ml/min/1.73 m2)
 74.86 ± 1.47
 68.40 ± 1.99
 65.04 ± 1.33
 <0.0001
 Y
tm
GFR estimate (ml/min/1.73 m2)
 72.26 ± 1.47
 64.62 ± 1.77
 63.75 ± 1.22
 <0.0001
 Y
 .sc
Glucose* (mg/dl)
 193.69 ± 11.45
 149.55 ± 4.18
 158.69 ± 2.90
 0.0005
 Y
 ien
Insulin
 21.92%
 29.82%
 45.16%
 <0.0001
 Y
 Y
 Y
cem
Metformin
 6.43%
 23.01%
 21.17%
 <0.0001
 Y
ag
Loop diuretics
 5.51%
 14.10%
 18.34%
 <0.0001
 Y
.or
DPP4
 1.05%
 6.48%
 6.39%
 <0.0001
 Y
g/
CCBs
 19.55%
 30.63%
 35.31%
 <0.0001
 Y
  on
b-Blocker
 21.92%
 39.06%
 45.80%
 <0.0001
 Y
 Y
 Ja
ARB/ACEI
 48.16%
 57.05%
 62.96%
 <0.0001
 Y
 Y
 nua
Vasodilators
 0.92%
 5.02%
 5.57%
 <0.0001
 Y
ry
Nicotinic acid derivatives
 0.13%
 1.30%
 1.37%
 0.02
 Y
  10,
(B) Clinical variables significantly specific to T2D subtype 2
  20
Clinical variable
 Mean or % subtype 1
 Mean or % subtype 2
 Mean or % subtype 3
 P (2 versus 1 + 3)
 S-1
 S-2
 S-3
16
Weight (kg)
 92.26 ± 1.08
 85.17 ± 1.14
 89.16 ± 0.83
 <0.0001
 Y
Troponin I level (ng/ml)
 0
 0.03 ± 0.01
 0.36 ± 0.09
 0.0003
 Y
 Y
Insulin
 21.92%
 29.82%
 45.16%
 <0.0001
 Y
 Y
 Y
(C) Clinical variables significantly specific to T2D subtype 3
Clinical variable
 Mean or % subtype 1
 Mean or % subtype 2
 Mean or % subtype 3
 P (3 versus 1 + 2)
 S-1
 S-2
 S-3
Blood protein total (g/dl)
 7.49 ± 0.03
 7.34 ± 0.04
 7.14 ± 0.03
 0
 Y
 Y
Urine protein-to-creatinine ratio
 0.40 ± 0.09
 1.19 ± 0.26
 2.48 ± 0.45
 0.0006
 Y
 Y
Troponin I level (ng/ml)
 0
 0.03 ± 0.01
 0.36 ± 0.09
 0.0003
 Y
 Y
Systolic blood pressure (mmHg)
 132.04 ± 0.73
 132.41 ± 0.92
 135.7 ± 0.7
 0.0001
 Y
Serum chloride level (mEq/liter)
 101.01 ± 0.17
 101.45 ± 0.18
 102.03 ± 0.11
 0
 Y
HMG-CoA reductase inhibitors (statins)
 42.26%
 45.71%
 56.39%
 <0.0001
 Y
Centrally acting antihypertensives
 1.44%
 1.30%
 4.11%
 0.0001
 Y
ARB/ACEI
 48.16%
 57.05%
 62.96%
 <0.0001
 Y
 Y
b-Blocker
 21.92%
 39.06%
 45.80%
 <0.0001
 Y
 Y
Insulin
 21.92%
 29.82%
 45.16%
 <0.0001
 Y
 Y
 Y
*Point of care.
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Table 2. Significant associateddisease categories.MHSA,mental health and substance abuse; LCI, lower confidence interval; UCI, upper confidence interval.
(A) Significant disease categories associated with T2D subtype 1

Disease category
www.ScienceTranslationalMedicine.org
RR
28 Octob
95% LCI
er 2015 Vol 7
95% UCI
Issue 311 311ra1
P value
Other upper respiratory infections
 1.68
 1.34
 2.11
 <0.0001
Immunizations and screening for infectious disease
 1.65
 1.32
 2.06
 <0.0001
Diabetes mellitus with complications
 1.50
 1.22
 1.84
 0.0001
Other skin disorders
 1.41
 1.13
 1.76
 0.003
E codes: place of occurrence
 1.38
 1.08
 1.77
 0.01
Blindness and vision defects
 1.32
 1.04
 1.67
 0.02
Other screening for suspected conditions (not mental disorders or infectious diseases)
 1.28
 1.04
 1.58
 0.02
Screening and history of MHSA codes
 0.74
 0.59
 0.94
 0.01
Other circulatory disease
 0.68
 0.54
 0.87
 0.002
Acute and unspecified renal failure
 0.63
 0.42
 0.94
 0.02
D
Pulmonary heart disease
 0.60
 0.37
 0.98
 0.04
 ow
n
Deficiency and other anemia
 0.57
 0.45
 0.71
 <0.0001
loa
E codes: adverse effects of medical care
 0.55
 0.38
 0.79
 0.001
de
Coronary atherosclerosis and other heart disease
 0.51
 0.40
 0.64
 <.0001
d fr
Peri-, endo-, and myocarditis; cardiomyopathy (without tuberculosis or sexually transmitted disease)
 0.48
 0.28
 0.82
 0.01
om
Aortic, peripheral, and visceral artery aneurysms
 0.36
 0.21
 0.64
 0.0004
ht
 

HIV infection
 0.22
 0.12
 0.38
 <0.0001
 tp:/
(B) Significant disease categories associated with T2D subtype 2
 /stm
Disease category
 RR
 95% LCI
 95% UCI
 P value
.scie
Cancer of bronchus: lung
 3.76
 1.14
 12.39
 0.03
nc
Malignant neoplasm without specification of site
 3.46
 1.23
 9.70
 0.02
em
Tuberculosis
 2.93
 1.30
 6.64
 0.01
ag.o
Coronary atherosclerosis and other heart disease
 1.28
 1.01
 1.61
 0.04
rg
Other circulatory disease
 1.27
 1.02
 1.58
 0.03
 on
/

Age
 1.01
 1.00
 1.02
 0.003
 Ja
Allergic reactions
 0.70
 0.57
 0.85
 0.0004
nua
Other screening for suspected conditions (not mental disorder or infectious disease)
 0.64
 0.52
 0.79
 <0.0001
ry 
Disorders of lipid metabolism
 0.56
 0.45
 0.70
 <0.0001
10,
E codes: struck by; against
 0.41
 0.18
 0.92
 0.03
 20
Peritonitis and intestinal abscess
 0.12
 0.02
 0.88
 0.04
16
(C) Significant disease categories associated with T2D subtype 3
Disease category
 RR
 95% LCI
 95% UCI
 P value
HIV infection
 1.92
 1.30
 2.85
 0.001
E codes: adverse effects of medical care
 1.84
 1.41
 2.39
 <0.0001
Aortic and peripheral arterial embolism or thrombosis
 1.79
 1.18
 2.71
 0.01
Hypertension with complications and secondary hypertension
 1.66
 1.29
 2.15
 <0.0001
Coronary atherosclerosis and other heart disease
 1.41
 1.15
 1.72
 0.001
Allergic reactions
 1.42
 1.19
 1.70
 0.0001
Deficiency and other anemia
 1.39
 1.14
 1.68
 0.001
Screening and history of MHSA codes
 1.30
 1.07
 1.58
 0.01
Diabetes mellitus with complications
 0.80
 0.67
 0.96
 0.02
E codes: place of occurrence
 0.71
 0.56
 0.89
 0.003
Other upper respiratory infections
 0.73
 0.57
 0.92
 0.01
Blindness and vision defects
 0.71
 0.57
 0.88
 0.002
Other skin disorders
 0.68
 0.55
 0.83
 0.0003
74 5
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clinical phenotype–based network topology, because patient genetic
data were not used in the determination of the patient-patient net-
work topology. We identified 1279, 1227, and 1338 genetic variants
specific to subtypes 1, 2, and 3, respectively, using a hypergeometric
enrichment approach (see Materials and Methods) (significant SNPs
are shown in table S3, A to C). After mapping the variants to gene
regions, we identified 425, 322, and 437 unique genes specific to sub-
types 1, 2, and 3, respectively. We used a comprehensive human dis-
ease–SNP association database (VarDi) (19) to assess the agreement
between genetic-disease associations and disease comorbidities asso-
ciated with each subtype. We analyzed the enrichment of phenotypes
including both diagnosis (for example, diabetic nephropathy) and
laboratory measurements (for example, creatinine levels) associated
with the genetic variants at the gene level.

We observed 27 gene-phenotype associations enriched (hypergeo-
metric analysis, P≤ 0.05) among the genetic variants unique to subtype
1 (Table 3A and Fig. 2). Many of the enriched gene-level phenotype
annotations have known associations with T2D, such as increased ser-
um retinol levels (20), increased B cell counts (21), increased albumin-
to-creatinine ratios (22), increased diabetes mellitus, increased serum
alanine transaminase levels (23), increased diabetic nephropathy (22, 24),
increased leptin receptor (a single-transmembrane domain receptor)
(25), increased serum levels of mannose-binding lectin (26), increased
forced expiratory volume (27), and increased serum vitamin D concen-
trations (28). A complete list of subtype 1–specific enriched phenotypes
is displayed in Table 3A.

We observed 25 gene-phenotype associations significantly enriched
among the genetic variants unique to subtype 2. The four enriched
gene-level phenotype annotations for subtype 2 were related to either
cancer or treatment of cancer including bleomycin sensitivity, epirubicin-
induced adverse drug reactions, stem cell transplantation, and follicu-
lar lymphoma. In addition, we identified two cardiovascular phenotypes,
left ventricular internal diastolic dimensions and atrial fibrillation.
The enriched gene-level phenotypes matched with patient comorbid-
ities associated with subtype 2 (Table 3B and Fig. 2), suggesting a
possible link between observed disease comorbidities and underlying
subtype genetics.

We observed 28 gene-phenotype associations significantly enriched
among the genetic variants unique to subtype 3 (Table 3C and Fig. 2).
Ten phenotypes were related to mental and neurological diseases, in-
cluding spinocerebellar ataxia type 1, intraventricular septal thickness,
anxiety disorders, cognitive decline, dementia, impaired play skills, intelli-
gence, depression, q power of electroencephalogram, and HIV-associated
neurocognitive disorders. Three were related to the cardiovascular sys-
tem, including heart rate interval (RR), peripartum cardiomyopathy,
and atrial fibrillation. Increased serum vitamin D concentrations (28)
were recently implicated as a risk factor for T2D and also were en-
riched in subtype 1. Furthermore, two phenotypes, allergy and re-
sponse to statins, were enriched for genetic variants that matched
with the identified clinical variables and phenotype comorbidities
specific to subtype 3, including cardiovascular disease and mental ill-
ness. Disease comorbidities and clinical variables associated with sub-
type 3 matched particularly well with the gene-level phenotype
enrichments. A complete list of enriched phenotypes for subtype 3
is shown in Table 3C.

The network of genetic variants in gene-level and associated phe-
notypes for the three T2D subtypes is shown in Fig. 2 (produced with
Cytoscape 3.2.0) (29).
www.Science
Significant pathway and toxicity functions specific
to T2D subtypes
We assessed the toxicity functions and signaling pathways for gene-
level enrichments unique to each subtype (425, 322, and 437 gene-level
enrichments specific to subtypes 1, 2, and 3, respectively) using Qiagen’s
Ingenuity Pathway Analysis (IPA) program. Canonical pathways in-
clude metabolic and cell signaling pathways that have been curated
from the literature by IPA. We identified five, two, and six canonical
pathways to subtypes 1, 2, and 3, respectively (P < 0.01), by Fisher’s
exact test right-tailed for enrichment.

Pathways that were enriched in subtype 1 were fatty acid b-oxidation
III, which is increased in diabetic liver disease (30), acetate conversion
to acetyl-CoA, which is involved in the metabolism of carbon sugars
(31–33), and cAMP (adenosine 3′,5′-monophosphate)–mediated sig-
naling, which normalizes glucose-stimulated insulin secretion in uncou-
pling protein 2–overexpressing pancreatic b cells (34). Two pathways
were associated with disease comorbidities for subtype 1, including
netrin signaling, which acts in a protective role during diabetic ne-
phropathy (35), and GABA (g-aminobutyric acid) receptor signaling,
which can often be detected early in the course of diabetic retinopathy
(36, 37).

Pathways enriched in subtype 2 include those involved in pattern
recognition receptors in the recognition of bacteria and viruses, which
might explain why patients in subtype 2 had an increased prevalence
of tuberculosis. We also found an enrichment for thrombopoietin
signaling, which activates a number of secondary messengers that pro-
mote cell survival, proliferation, and differentiation (38). Increased
thrombopoietin levels might contribute to the development and pro-
gression of coronary artery disease (39, 40).

Pathways enriched in subtype 3 include a-adrenergic signaling,
which is implicated in diverse physiological functions, in particular
those of the cardiovascular and central nervous systems (41, 42);
synaptic long-term depression (43); CREB (cAMP response element–
binding protein) signaling in neurons, which has a well-documented
role in neuronal plasticity and long-term memory formation in the
brain (44) as well as therapeutic potential for patients who have Alz-
heimer’s disease (45); glutamate receptor signaling, which has been
implicated in brain pathologies in neurological diseases (46); hepatic
fibrosis and hepatic stellate cell activation; and sperm motility. The
complete list of pathways and their related genes for all subtypes are
shown in Table 4.

Enriched toxicity functions included hepatotoxicity, nephrotoxicity,
cardiovascular toxicity, and clinical pathology endpoints. We identified
nine, three, and three toxicity functions enriched in subtypes 1, 2, and 3,
respectively (P < 0.01). In subtype 1, four of the nine functions are re-
lated to renal dysfunction, including glomerular injury, renal hypertro-
phy, renal proliferation, and renal degeneration, suggesting that diabetic
nephropathy exists in the subtype 1 cohort (47, 48). The remaining five
functions are related to liver dysfunction, which match the two liver
enzymes, alanine transaminase levels and aspartyl phenylalanine levels,
identified by VarDi (19). Surprisingly, subtypes 2 and 3 were both as-
sociated with cardiac arteriopathy, even though they were associated
with different sets of genes. Most toxicity functions that are related
to cardiovascular disorders and liver fibrosis match the findings that
both cohorts have high risk for cardiovascular diseases, as deduced on
the basis of disease comorbidities from the EMRs and genetic variant
associations by VarDi (19). The complete list of enriched toxicity
functions for all subtypes and their related genes are listed in Table 5.
TranslationalMedicine.org 28 October 2015 Vol 7 Issue 311 311ra174 6
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Table 3. Significant phenotypes.
(A) Significant phenotypes with disease–genetic variant enrichments
specific to T2D subtype 1
Phenotypes
 Gene symbol
 P
Albumin-to-creatinine ratios
 ACE
 1.00 × 10−27
Aspartyl phenylalanine levels
 ACE
 1.00 × 10−27
B cell count
 LAMB4
 1.00 × 10−27
Chronic heart failure
 LEPR
 1.00 × 10−27
Crypt frequency
 SEMA3A
 1.00 × 10−27
Dyslexia
 CLSTN2
 1.00 × 10−27
Hypercholesterolemia
 BTN2A1
 1.00 × 10−27
Mannose-binding lectin levels
 MBL2
 1.00 × 10−27
Prominence of right endocanthion
 TMTC2
 1.00 × 10−27
D
o
Retinol levels
 FFAR4
 1.00 × 10−27
w
n
Phosphorylated t 181 protein levels
 MTUS1, UNC5C
 5.53 × 10−3
loa
Angiotensin-converting enzyme activity
 ACE
 1.32 × 10−2
de
Diabetes mellitus
 BTN2A1
 1.32 × 10−2
 d fr
Entorhinal cortical volume
 F13A1
 1.32 × 10−2
om
Multiple system atrophy
 SNCA
 1.32 × 10−2
htt
 

N-acetylornithine levels
 ALMS1
 1.32 × 10−2
p:/
Otosclerosis
 TGFB1
 1.32 × 10−2
 /stm
Pelvic organ prolapse
 ZFAT
 1.32 × 10−2
.sc
Tanning ability
 MC1R
 1.32 × 10−2
ien
Vitamin D concentrations
 GC
 1.32 × 10−2
cem
Diabetic retinopathy
 PLXDC2, HS6ST3
 2.32 × 10−2
ag
Alanine transaminase levels
 ZNF827
 3.66 × 10−2
.or
Diabetic nephropathy
 ACE
 3.66 × 10−2
 o
g/
Left ventricular wall thickness
 GRID1
 3.66 × 10−2
n 
Leptin receptor
 LEPR
 3.66 × 10−2
 Jan
Forced expiratory volume
 ZSCAN31, TNS1
 5.00 × 10−2
 uary 1
Platelet response to aspirin
intervention therapy
ZNF583, GLIS3
 5.00 × 10−2
0, 201
(B) Significantphenotypeswithdisease–genetic variant enrichments specific to
T2D subtype 2
6

Phenotypes
 Gene symbol
 P
Alcohol and nicotine codependence
 PLEKHG1
 1.00 × 10−27
Bleomycin sensitivity
 SAMD12
 1.00 × 10−27
Epirubicin-induced adverse drug reactions
 MCPH1
 1.00 × 10−27
Follicular lymphoma
 SV2B
 1.00 × 10−27
Lactose intolerance
 ST5
 1.00 × 10−27
Pronasale to left alare distance
 CACNA2D3
 1.00 × 10−27
Stem cell transplantation
 NLRP3
 1.00 × 10−27
Geographic atrophy
 HTRA1, CFH
 6.57 × 10−4
Brain
 CDH4
 7.58 × 10−3
Left ventricular internal diastolic dimensions
 SLC35F1
 7.58 × 10−3
Mean platelet volume
 ARHGEF3
 7.58 × 10−3
Polypoidal choroidal vasculopathy
 CFH
 7.58 × 10−3
Psychosis
 ZNF804A
 7.58 × 10−3
www.Science
(A) Significant phenotypes with disease–genetic variant enrichments
specific to T2D subtype 1

(B) Significant phenotypes with disease–genetic variant enrichments
specific to T2D subtype 2
Phenotypes
TranslationalMedicine.org 28 October 20
Gene symbol
15 Vol 7 Issue 311 311
P

Suicidal behavior
 GFRA1
 7.58 × 10−3
Tanning ability
 HERC2
 7.58 × 10−3
Total t protein levels
 CDH4
 7.58 × 10−3
Meningococcal disease
 TMPRSS15, CFHR3, CFH
 7.79 × 10−3
Keratoconus
 SOX5,MACROD2
 1.76 × 10−2
Meningioma
 CHN2
 2.14 × 10−2
Polycystic ovary syndrome
 DENND1A
 2.14 × 10−2
Primary sclerosing cholangitis
 GAS7
 2.14 × 10−2
Atrial fibrillation
 CAV1, HCN4
 2.64 × 10−2
Age-related macular degeneration P
LEKHA1, HTRA1, IL8, CFH
 3.09 × 10−2
Open-angle glaucoma
 ADAMTSL1, CAV1
 3.71 × 10−2
Phosphorylated t 181 protein levels
 CHN2
 4.04 × 10−2
(C) Significantphenotypeswithdisease–genetic variantenrichments specific to
T2D subtype 3
Phenotypes
 Gene symbol
 P
Gallbladder cancer
 CNTN4, DCC 1
.00 × 10−27
Allergy
 FHIT 1
.00 × 10−27
B cell chronic lymphocytic leukemia
 CD38 1
.00 × 10−27
Lymphoid interstitial pneumonitis
 FGF14 1
.00 × 10−27
Osteoporosis
 ALDH7A1 1
.00 × 10−27
Peripartum cardiomyopathy
 AKAP13 1
.00 × 10−27
RR interval
 GPR133 1
.00 × 10−27
Spinocerebellar ataxia type 1
 ATXN1 1
.00 × 10−27
Intraventricular septal thickness
 EXT1, CERS6
 1.65 × 10−3
Endometrial cancer
 SLC8A1
 1.40 × 10−2
HIV-associated
neurocognitive disorders
SLC8A1
 1.40 × 10−2
Response to statin
 ASB18
 1.40 × 10−2
Uterine leiomyoma
 TNRC6B
 1.40 × 10−2
Vitamin D concentrations
 DAB1
 1.40 × 10−2
Anxiety disorders
 SDK2, FHIT
 2.50 × 10−2
Cognitive decline
 CTNND2
 3.86 × 10−2
Dementia
 ABCA1
 3.86 × 10−2
Estrone levels
 ESR1
 3.86 × 10−2
Impaired play skills
 DCC
 3.86 × 10−2
Intelligence
 CNTN4
 3.86 × 10−2
Myopia
 MIPEP
 3.86 × 10−2
Plasma progranulin levels
 DNAH11
 3.86 × 10−2
Polycystic ovary syndrome
 THADA
 3.86 × 10−2
Renal cell carcinoma
 ITPR2
 3.86 × 10−2
Theta power of electroencephalogram
 ST6GALNAC3
 3.86 × 10−2
Central corneal thickness
 COL5A1, FNDC3B
 4.00 × 10−2
Atrial fibrillation
 C9orf3, SYNE2
 5.00 × 10−2
Depression
 FHIT, BICC1
 5.00 × 10−2
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Together, these results suggest that the current clinical definition of
T2D subsumes more nuanced subtypes whose definition and recogni-
tion might inform important clinical distinctions. Furthermore, the
genetic findings suggest that these differences between T2D subtypes
are potentially rooted in biological differences that relate to the observed
clinical differences, and these biological differences might suggest new
opportunities for biomarker discovery or improving our understand-
ing of disease mechanisms.
www.Science
DISCUSSION

Previous efforts to analyze or mine large clinical populations with as-
sociated genome-wide genotyping information have largely focused
on replicating known clinical genotype-phenotype correlations, or dis-
covering new correlations from more narrowly defined clinical pheno-
types that can be extracted from EMRs (49, 50). Previous efforts to
develop and apply phenome-wide association study (PheWAS) approaches
represent a new approach in which data from EMRs are integrated
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Fig. 2. Genotype-phenotype network for three subtypes in T2D. The
network consists of the significant association between phenotypes and genet-

are connected by gray lines (P value). Oval nodes in dark green indicate the
shared phenotypes across subtypes. The edge width reflects the significance of
ic variants at gene level specific to three T2D subtypes (subtype 1 in blue, sub-
type 2 in orange, and subtype 3 in pink). Phenotypes (oval) and genes (triangle)
the P value for enrichment. The size of the node reflects the amount of asso-
ciated genes or phenotypes. This network was visualized using Cytoscape 3.2.0.
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Table 4. Canonical pathways at gene level for each T2D subtype. ns, not significant.
Canonical pathway
 Subtype 1
ww
Subtype 2
w.ScienceTra
Subtype 3
nslationalMed
Genes
Fatty acid b-oxidation III
 1.1 × 10−3
 ns
 ns
 ECI1, ECI2
Acetate conversion to acetyl-CoA
 3.5 × 10−3
 ns
 ns
 ACSL1, ACSL2
Netrin signaling
 6.2 × 10−3
 ns
 ns
 ABLIM1, PRKG1, UNC5B, UNC5C
GABA receptor signaling
 8.8 × 10−3
 ns
 ns
 ADCY8, ALDH5A1, GABBR1, GABRR2, GPHN
cAMP-mediated signaling
 9.2 × 10−3
 ns
 2.0 × 10−2
 Subtype 1: ADCY8, AKAP12, CAMK1D, CNGB1,
CNGB3, GABBR1, MC1R, PDE3A, PKIA, RGS7

Subtype 3: AKAP13, CAMK4, CHRM5, GNAI3, HTR1D,
PDE4B, PDE6A, PRKAR2B, RAF1
Role of pattern recognition receptors in recognition
of bacteria and viruses
ns
 1.8 × 10−3
 ns
 CXCL8, MAPK10, NLRP3, OAS1, OAS3, PRKCD, PRKCH
Thrombopoietin signaling
 ns
 6.8 × 10−3
 ns
 GAB2, PRKCD, PRKCH, SOS1
D
a-Adrenergic signaling
 ns
 ns
 1.2 × 10−3
 CAMK4, GNAI3, GYS1, ITPR2, PRKAR2B, RAF1, SLC8A1
ow
Synaptic long-term depression
 ns
 ns
 1.4 × 10−3
nl
GNA11, GNAI3, GRID2, GRM1, ITPR2, PLA2G4C,
PLA2R1, PPP2R5B, RAF1,
oad
CREB signaling in neurons
 ns
 ns
 1.4 × 10−3
ed
CAMK4, GNA11, GNAI3, GRID2, GRIK4, GRM1, ITPR2,
POLR2I, PRKAR2B, RAF1
 fro
Glutamate receptor signaling
 ns
 ns
 4.2 × 10−3
 CAMK4, GRID2, GRIK4, GRM1, PICK1
m
 
Hepatic fibrosis/hepatic stellate cell activation
 3.0 × 10−2
 ns
 4.0 × 10−3
http://s
Subtype 1: BCL2, COL19A1, COL28A1, IGF1R, IL1RAP,
LEPR, TGFB1, TGFB2

Subtype 3: BAX, COL15A1, COL25A1, COL4A4, COL5A1,
COL5A3,COL9A3, FGF2, KLF12, MYH7B
tm
.
Sperm motility
 ns
 ns
 7.3 × 10−3
 CAMK4, ITPR2, PDE4B, PLA2G4C, PLA2R1, PRKAR2B, SLC12A2
s
c
iencem
ag.org
Table 5. Toxicity functions at the gene level for each T2D subtype.
 on J
/

Toxicity functions
 Subtype1
 Subtype2
 Subtype3
 Genes
anu
Biliary hyperplasia
 3.5 × 10−3
 ns
 ns
 CFTR, PKHD1
 ary 
Glutathione depletion in liver
 3.5 × 10−3
 ns
 ns
 LEPR, TGFB1
10,
Liver fibrosis
 3.5 × 10−3
 ns
 ns
 TGFB1, LEPR, TGFB2, PKHD1
 201
Glomerular injury
 4.7 × 10−3
 ns
 ns
 FYN, TGFB1, LEPR, RARA, TNS1, PKN1, PTGER1, BCL2
6
Renal hypertrophy
 4.7 × 10−3
 ns
 ns
 TGFB1, LEPR, RARA, BCL2
Liver damage
 5.1 × 10−3
 ns
 ns
 SLC10A1, TGFB1, IGF1R, GABBR1, SERPINA1,
CD274, PARK2, PTGER1
Liver inflammation/hepatitis
 5.1 × 10−3
 ns
 ns
 AKAP12, SLC10A1, TGFB1, PDE3A, IGF1R,
GABBR1, CD274, PARK2
Renal proliferation
 7.6 × 10−3
 ns
 ns
 PRKG1, TGFB1, UNC5B, TTLL4, CRK, ZNF512B,
DLC1, BCL2, UNC5C, AFF1
Renal degeneration
 8.0 × 10−3
 ns
 ns
 TGFB1, TNS1, BCL2
Cardiac arrhythmia
 ns
 1.0 × 10−3
 ns
 KCND3, HCN4, KCNG2, KCNQ1, CNTN5
Bradycardia
 ns
 4.9 × 10−3
 ns
 HCN4, KCNQ1
Cardiac arteriopathy
 ns
 9.3 × 10−3
 4.8 × 10−6
 Subtype 2: SAMD12, KALRN, ITGA8, PDE5A, DOCK4,
CNTN6, PRKCH, CSMD2, CPEB3, CNTN5

Subtype 3: CERS6, CLIC5, ZMYM2, CDCP1, ABCG1, FRMD4A,
PDE4B, PTPRM, ABCA1, F2, SPATA5, AKAP13, MCF2L, PBX3, CNTNAP5,

FMN2, CACNA2D1, SLC8A1, ESR2
Liver fibrosis
 ns
 ns
 3.3 × 10−3
 FGF2, PLAUR, BMP7, CC2D2A, F2, HSPB1
Congenital heart anomaly
 ns
 ns
 5.8 × 10−3
 DNAH11, BICC1, PDS5B, INVS
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and used for systematic discovery of new clinical genotype-phenotype
correlations (51). However, the goal of PheWAS is to discover new
pleiotropic genotype-phenotype associations—that is, to identify many
clinical phenotypes linked to a single genetic locus. The goal of our
study was to develop a precision medicine approach to characterize
the complexity of T2D patient populations through data-driven,
topological analysis of patient-patient similarity across clinical pheno-
type traits. Our approach is distinct from previous efforts in that we
developed and applied a patient-centric clinical phenotype similarity
network and then used the topology of the resulting patient-patient
similarity network to define patient subgroups, which were subsequent-
ly used as the basis of clinical and genotype risk factor associations.

We hypothesized that topological analysis of patient populations in
high-dimensional clinical phenotype space may identify meaningful
subpopulations of T2D patients. We focused our analysis on T2D pa-
tients, who are of high clinical importance and the most prevalent dis-
ease group in the population. We identified 2551 T2D patients in our
outpatient cohort as determined by the eMERGE T2D electronic phe-
notyping algorithm (16, 17). Using our data-driven, topology-based
approach, we identified three distinct subtypes of T2D. Subtype 1 com-
prises ~30% (n = 761) of the overall T2D cases and was enriched for
diabetic nephropathy and diabetic retinopathy, both microvascular
complications. Subtype 2 comprises ~24% (n = 617) of all T2D cases
and was enriched for cancer malignancy and cardiovascular diseases.
Subtype 3 comprises ~43% (n = 1096) of all T2D cases and associated
most strongly with cardiovascular diseases, neurological diseases, aller-
gies, and HIV infections. Macrovascular complications are generally
best averted by stringent control of blood pressure and low-density
lipoprotein. We identified 1279, 1227, and 1338 SNPs, which mapped
to 425, 322, and 437 genes, specific to subtypes 1, 2, and 3, respective-
ly. The enriched phenotypes and biological functions defined at the
gene level for each subtype matched with the disease comorbidities
and clinical differences that we identified through EMR-based topology
data analysis (TDA). This observed agreement is likely meaningful
mechanistically because the genetic data were not used to inform pa-
tient subgroup topology.

The patient-patient network representation was constructed using
cosine distance metric with two filter functions to assess the similarity
of the clinical variables from EMRs. The clinical data set comprises
more than 500 clinical variables represented in the EMRs, including
patient demographics, laboratory tests, and medication orders.

The observed differences in comorbidity and genetic associations
between T2D subtypes might serve as useful features for informing the
clinical characterization of T2D patients. We found several notable as-
sociations between disease diagnosis categories and T2D subtypes. We
used CCS developed by the U.S. Agency for Healthcare Research and
Quality (AHRQ) (18) to narrow down more than 7000 ICD-9-CM di-
agnosis codes in our cohort to higher-order single-level disease catego-
ries (n = 281) that include exclusively mental health and substance
abuse (CCS-MHSA) general categories, which were more useful for
presenting data at a descriptive statistical categorical level than using
individual ICD-9-CM codes. Patients in subtype 1 associated most with
prototypical microvascular diabetic complications, namely, diabetic
nephropathy and diabetic retinopathy, which was supported by both
clinical data and genotype data independently. In support of a genetic
etiology for subtype 1 phenotype manifestation, the ACE gene, which
encodes angiotensin I converting enzyme and was specifically asso-
ciated with this cohort (Table 3A and Fig. 2), has been implicated
www.ScienceT
in diabetic nephropathy (52, 53) and also in platelet aggregation (53).
Accordingly, this association could reasonably suggest a mechanism to
explain the lower platelet counts observed in subtype 1 patients (54). In
addition, we extracted hemoglobin A1c (HbA1c) levels from our EMRs
and found that patients in subtype 1 had the highest HbA1c levels com-
pared with other two groups (7.68 ± 1.75, 7.45 ± 1.87, and 7.47 ± 1.78
in subtypes 1, 2, and 3, respectively, P < 0.05), which confirmed that
subtype 1 was most likely enriched with microvascular diabetic com-
plications best prevented by glycemic control (55).

Patients in subtype 2 were more likely to associate with cancer of
the bronchus and lung (RR, 3.76; range, 1.14 to 12.39) and malignant
neoplasm without specification of site (RR, 3.46; range, 1.23 to 9.7).
Epidemiological studies have demonstrated an association between
T2D and cancer (56). To try to unravel a putatively causal ordering
for this disease link, we compared the first diagnosis dates for both dis-
eases in our cohort to determine whether one more often predated the
other. We identified 40% patients who were diagnosed with T2D
before any instance of cancer and 60% of patients who were diagnosed
with a cancer before T2D. This pattern indicates that T2D can be ei-
ther the risk factor for or consequence of many forms of cancer (56, 57).
Patients in subtype 3 were most likely to be associated with cardio-
vascular diseases and mental illness according to clinical data and geno-
type data independently. These patients were more often prescribed
the top psychiatric medications to treat anxiety and depression (58),
with 3.4% (P = 0.01) and 8.3% (P = 0.02), compared with other two
subtypes from c2 tests, respectively, as well as insulin treatment (45%,
P < 0.0001). The 61 patients diagnosed with HIV infection could have
a poorer response to therapy for diabetes because antiretroviral agents
and chronic inflammation could adversely affect glycemic control (59).
To address any potential bias from HIV infection or treatment, we re-
moved these HIV patients from the cohort and reanalyzed the data
using the LASSO algorithm (60). Except for allergies, disease comor-
bidities remained the same, dismissing the possibility of HIV infection
bias and exhibiting the robustness of our methodology. Furthermore,
the FHIT gene, which encodes the fragile histidine triad protein and
was specifically associated with the subtype 3 cohort, has been asso-
ciated with allergy and neurological disorders, including anxiety and
depression (Table 3C and Fig. 2) (61–63), indicating that FHIT could
be a driver for these conditions and could explain why patients who
had allergies also had an increased rate of suicide (64–67). Although
patients in subtypes 2 and 3 had significantly lower BMIs than those
in subtype 1 (P < 0.0001, Table 1B), both were enriched for cardiovas-
cular morbidity, whereas patients in subtype 1 were not. A recent study
showed that weight loss does not reduce the rate of cardiovascular
events in obese adults with T2D (68, 69). These data suggest that the
cardiovascular morbidity seen in patients in subtypes 2 and 3 might be
independent from obesity and potentially driven by genetic variants.
Another interesting finding along these lines is our observation that
hypertensive macrovascular variants were associated with subtypes 2
and 3, whereas hyperglycemic microvascular variants were asso-
ciated with subtype 1.

Our study has several potential limitations. We identified 2551 T2D
patients on the basis of an eMERGE algorithm (16, 17) from an 11,210
genotyped outpatient cohort. The sample size is relatively modest for
identifying risk variants from a genome-wide association study (GWAS)
point of view. Given that we investigated 38 million variants, it was a
great challenge to control for false discovery rate. In our study, however,
we derived our genetic data frommore than ~10,000 published GWAS
ranslationalMedicine.org 28 October 2015 Vol 7 Issue 311 311ra174 10
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at the P < 1 × 10−6 significance level. The stringency of this inclusion
criterion adds a measure of control to the procedure because subtype
enrichments were identified using these disease-associated variants.

Another limitation is the lack of a deep consideration for the tem-
poral aspects of disease trajectories. In analyzing the EMRs in Mount
Sinai Medical Center (MSMC), we cannot always be clear when and
where the first diagnosis of disease took place. Specifically, we cannot
determine whether the patient had been diagnosed beforehand in oth-
er hospitals and, if so, how long the patient had the diagnosed disease
before his or her first observed ICD-9-CM diagnosis. One possible
solution is to explore the integration of insurance claims data. We will
explore an extension of our analytical framework that incorporates
temporal analysis in future studies.

In addition, T2D inclusion and exclusion criteria were precisely
refined by the eMERGE algorithm (16, 17), and the other disease cat-
egories developed by AHRQ were all based on the current ICD-9-CM
diagnosis code. Furthermore, CCS developed by AHRQ (18) only
assigns one disease classification of a disease. As of now, only 20 phe-
notypes have been validated by eMERGE (70) using iteratively refined
phenotype algorithms incorporating both structured and unstructured
data to achieve high PPVs to identify true cases and controls fromEMRs.

Our approach combines imputed variant information from the
whole genome with high-dimensional EMRs, which facilitates pin-
pointing the differences between clinical and genetic factors specific
to each subtype. This provides a tractable framework that enables ini-
tial steps toward the T2D redefinition informed by genetic markers. Our
genetic analysis used the imputed variants from the 1000 Genome Pro-
jects, not limiting the variants in the genotyping arrays. This strategy
offers better coverage on the intergenic and noncoding regions when
investigating the associations between variants and phenotypes. The En-
cyclopedia of DNA Elements (ENCODE) project has shown that ~95%
of known variants within sequenced genomes and 88% of those variants
from GWAS fall outside of coding regions (71), and a functional SNP
most strongly supported by experimental evidence is an SNP in the linkage
disequilibrium region (72). The technique of imputation uses informa-
tion of haplotypes from a more comprehensive whole-genome sequencing
study (the 1000 Genome Projects) to infer variants that were not pro-
filed by the original technology (73). With the information on variants
from the whole genome, we were able to identify more variants asso-
ciated with subtypes as well as to achieve better mapping of the iden-
tified variants to published GWAS.

Our study offers several important conclusions for translational re-
search. First, our approach demonstrates the utility and promise of ap-
plying the precision medicine paradigm in T2D, and can be extended
toward the study of other complex, multifactorial diseases. Next, our
study demonstrates the utility of using higher-dimensional clinical data
to first define the complex topology of a clinical phenotype before ge-
netic marker discovery. This stands in contrast with previous precision
medicine efforts that begin with molecular stratification and rely on
established clinical phenotype definitions. Furthermore, the subtype-
specific genetic factors identified by this study can be further explored
through additional population genetic and experimental work to eval-
uate their utility for identifying subtype-specific biomarkers or to im-
prove understanding of T2D disease mechanisms. Last, incorporation of
the temporal dimension in future development of our topology-based
approach might provide additional insight into the complexity of T2D
patient populations along the natural history of disease and inform
disease prevention efforts.
www.ScienceT
MATERIALS AND METHODS

Study design
The aim of our study was to develop a precision medicine approach to
better understand and to characterize the complexity of T2D patient
populations through data-driven, topological analysis of patient-patient
similarity across clinical phenotype traits. We performed topological
analysis for the data set, which comprises EMRs and genotype data
from 11,210 individuals from MSMC’s large outpatient population.
T2D and non-T2D control phenotypes were defined by the eMERGE
phenotyping algorithm (16, 17). We assessed the disease comorbidities
and human disease–SNP association for each subtype in T2D, as well
as the enriched phenotypes and biological functions at gene level for
each subtype.

Patient population
We recruited and analyzed 11,210 unique patients who are consented
participants in the Mount Sinai BioMe Biobank Program, an ongoing,
EMR-linked bio- and data repository. The data set comprises adult
patients recruited nonselectively from MSMC’s large outpatient pop-
ulation. Participants are predominantly recruited from local diverse
communities in New York with 46% Hispanic, 32% African American,
20% European white, and 2% others as self-reported. The data were
composed of 6857 (61%) females and 4350 (39%) males, and the aver-
age age is 55.5 years for overall, female, and male populations (fig. S1).
The overall characteristics of 11,210 Biobank patients are shown in table
S2. The individuals represented in the clinical data set are drawn from
diverse racial, ethnic, and socioeconomic backgrounds. The EMR data
are deidentified, and this study was governed by institutional review
board approval and informed consent.

Genotype data processing and identification of genetic variants
and genes
A total of 11,210 unique patients were genotyped for genome-wide
Illumina OmniExpress and Illumina Human Exome BeadChip arrays.
We used a default GenCall score cutoff of 0.15 in GenomeStudio
(v2011.1) as recommended by Illumina. Quality control was per-
formed by zCall (74) for SNP quality. SNPs were removed if they
had (i) a call rate of <95%, (ii) no minor alleles, (iii) Hardy-Weinberg
equilibrium within population (P < 5 × 10−5), and (iv) removed A/T
and G/C SNPs and any SNPs that deviate from 1 kg (<40% versus
>60% and vice versa). After quality control for call quality and pop-
ulation equilibrium, the genotype data were phased by ShapeIt v2 r644
(75), yielding 850,067 SNPs, and then imputed by IMPUTE2.3 (73)
using the 1000 Genomes Project (76) version 3 and integrated variant
set (August 2012) as the reference panel, resulting in 38,068,758 var-
iants. A complete list of the number of variants, in coding regions, and
genes in both original genotype and the imputed data using genome
build GRCh37/hg19 is shown in table S4. The rationale for using the
1000 Genomes Project as reference panel for imputation is that it con-
tains the largest sample size of most diverse ethnicity background.
Given the diversity in the Mount Sinai Biobank patients, using the
1000 Genomes Project allows us to identify the closest individuals
for each patient and impute for genotypes that were not profiled in the
original array. We mapped the imputed variants to gene regions by
SnpEff v2 r644 (77) and AILUN [(78); http://ailun.stanford.edu] using
human genome assembly (GRCh37/hg19) reference genome (UCSC
Genome Browser, http://genome.ucsc.edu). The imputed variants data
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covering variants originally profiled by the genotyping arrays as well
as variants observed in the 1000 Genomes Projects were then used for
association analysis.

Clinical phenotype data
We generated a pseudo cross-sectional data set from our deidentified
patient records using the following phenotypic logic scheme. Using
the initial enrollment date into the BioMe program (D1) as an anchor,
we populated all (first) laboratory values, vitals, and specified med-
ications ±30 days from D1. We collected the last laboratory/vital/
medication date (D2) where the upper bound of theD2 date was con-
strained to D1 +30 days, and the lower bound constrained to D2 = D1.
In most cases, D2 = D1. We then populated all ICD-9-CM codes for
patients, where ICD-9-CM date ≤ D2 date. We then populated all
medication orders for patient, where medication orders date ≤ D2
date. The data set also includes self-reported demographic data col-
lected at D1.

T2D and non-T2D control phenotypes were defined by an elec-
tronic phenotyping algorithm that was developed by the eMERGE
network (16, 17) based on ICD-9-CM diagnosis codes, laboratory
tests (LONIC), prescribed medications (RxNorm), physician notes
(natural language processing), and family history. Interim results were
vetted by subject matter experts (SMEs) to verify that the queries were
capturing the specified data appropriately. Adjustments to the queries
were implemented iteratively as per the feedback received. Once the
SMEs were satisfied with the algorithm components, the separate
queries were packaged into a single job flow and executed against
the base population datamart, resulting in the identification of cases
and controls. We randomly selected samples of 100 cases and 100 con-
trols for manual chart review by clinical experts from the endocri-
nology division at Mount Sinai Hospital and performance statistics
generated. The algorithm achieved a PPV of 96% for cases and 100%
for controls.

The processed data were then assembled into a data matrix of n pa-
tients by P clinical variables. The data set used for analysis represented
11,210 individual patients, 505 clinical variables (480 of which were clin-
ical laboratory measures), and 7097 unique ICD-9-CM codes (1 to 218
per patient). On average, there were 64 clinical variables collected per
patient (range, 25 to 212). To avoid overfitting, we selected the clinical
variables with at least 50% of patients who had the values, resulting in
73 variables to perform the analysis (table S1).

Disease classification
Each individual patient had at least one ICD-9-CM code diagnosis at
the time his or her DNA sample was collected. CCS is a tool that was
developed at AHRQ for clustering patient diagnoses and procedures
into a manageable number of clinically meaningful categories (18).
The single level of CCS is used to classify all diagnoses and proce-
dures into unique groups based on the patient’s ICD-9-CM codes.
The multilevel characterization of CCS is used to group single-level
CCS categories into broader body systems or condition categories
(for example, “Diseases of the Circulatory System,” “Mental Disorders”).
The multilevel system has four levels of groupings for diagnoses, and
we use the highest, most broad level to examine and assess general
groupings for the disease category (18). In our study, we used 281
mutually exclusive single-level and 18multilevel categories (broadest
level) from CCS to map the disease categories based on their ICD-9-
CM codes.
www.ScienceT
TDA pipeline
We developed a novel TDA-based approach to perform unsupervised
clustering of patients using various clinical features to produce a patient-
patient network organized according to the high-dimensional clinical
phenotype similarity among patients. We use Ayasdi 3.0 (79, 80)
(http://ayasdi.com, Ayasdi Inc.) to perform the TDA analysis. We
used TDA pipeline for overall patients, random samplings of training
and test data sets. A cosine distance metric was used to assess the sim-
ilarity of the data points based on clinical variables (Eq. 1). Two filter
functions, L-infinity centrality and principal metric singular value
decomposition (SVD1), were used to generate the patient-patient net-
work based on clinical variables. L-infinity centrality is defined for each
data point y to be the maximum distance from y to any other data point
in the data set. It produces a more detailed and succinct description of
the data set than a typical scatter plots display (80). Large values of this
function correspond to points that are far from the center of the data
set. SVD1 also was used in the data matrix to obtain subspaces within
the column space, and dimensionality reduction is accomplished by
projection on these subspaces (80). This is done with standard linear
algebraic techniques when possible, and when the number of points is
too large, numerical optimization techniques are used.

cosine−similarity D1;D2ð Þ ¼ D1•D2
‖D1‖‖D2‖

¼ ∑n
i¼1D1i � D2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1ðD1iÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1ðD2iÞ2
q ð1Þ

where D1 and D2 represent two individual data points.

Statistical analysis
We used Ayasdi 3.0 (79, 80) (http://ayasdi.com, Ayasdi Inc.) to perform
TDA for generating the patient-patient network. We used Qiagen’s
IPA program version 24390178 (IPA, Qiagen, http://qiagen.com/
ingenuity) to assess the toxicity functions and pathways for significant
genes associated with each subtype. For imputed SNPs, we performed
hypergeometric analysis to identify the significant SNPs associated
with each subtypes based on their allele frequency and then examined
the disease enrichment associated with the genes mapped from SNPs.
The goal of performing hypergeometric tests is to identify genes that
are highly associated with each subtype, which would lead to distinct
phenotypes associated with each subtype. Such analysis is by nature
different from traditional GWAS, where the goal is to identify disease-
causing variants. Therefore, the hypergeometric test P values were
used as an association measure instead of the evaluation of signifi-
cance for individual SNPs. Similar analysis can also be seen in gene
set–based gene expression analysis such as gene set enrichment anal-
ysis (81). We used our curated VarDi (19) to assess the significance of
the genotype-phenotype enrichment. VarDi (19) is composed of 24,435
variants mapped to 3694 unique genes in 904 distinct phenotypes with
a significant level (P < 1 × 10−6) from over ~13,000 GWAS, and we
used P < 1 × 10−6 to identify variants from VarDi (19). LASSO provides
stability and robustness statistics, which are used to inform consistency
and sparsity. LASSO seeks a model that not only fits well but also is
“simple” to avoid large variation, which occurs in estimating complex
models (60). We used the LASSO algorithm with corrected Akaike
information criterion statistic (AICC) (Eq. 2) (82) for feature selection
and logistic regression for RR estimate of disease comorbidities based
ranslationalMedicine.org 28 October 2015 Vol 7 Issue 311 311ra174 12
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on CCS disease classification. We used analysis of variance (ANOVA),
two-tailed t test, or c2 tests to compare multiple or two-class continuous
or categorical clinical variables. Data were presented as means ± SE.
Statistical analyses and random samplings were carried out using SAS
9.3.2 (SAS Institute) and R 2.15.1 (83). We used Cytoscape 3.2.0
(29) to visualize the networks for the significant genotype-phenotype
association identified from VarDi (19) specific to each of the T2D
subtypes.

AICC ¼ 1þ ln
SSE

n

� �
þ 2ðk þ 1Þ

n−k−2
ð2Þ

where k is the number of parameters in the model, and n is the sample
size.
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