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SUPPLEMENTARY METHODS 

Overview of Annotation of LoF variants 

Genotyping and subsequent imputation yielded data for more than 37 million genetic variants in the 

BioMe Biobank cohort. There are a number of tools available to annotate effects of mutations on gene 

function and previous related studies have used various tools for their annotation procedures. As 

different annotators have their strengths and weaknesses, we decided to utilize three widely-utilized 

annotators to identify the predicted effects of these mutations: VAT [1], ANNOVAR [2] and SnpEff [3]. 

Following the example of previous studies, we limited LoF annotation to “stop gain”, “splice site”, and 

“frame shift” only with “high” or “full” impact. Notably, the proportion of three types of the predicted 

LoF variants varied with different annotators (Supplementary Fig. 1A), reflecting some degree of 

discrepancy and the possibility of both false positive and false negative calls by each annotator. We 

then empirically defined LoF as a variant that was annotated so in at least two out of the three 

annotators (i.e. a consensus annotation) (Supplementary Fig. 1B). After further QC steps (see 

Methods; Supplementary Fig. 2A), we ended up with 2,818, high confidence variants collapsed to 

2,143 genes. All identified LoF variants along with their annotations and frequencies in the BioMe 

Biobank cohort and public datasets are presented in Supplementary Table 1.  There are 10 variants 

that are not seen in these public datasets, but they were directly measured on the exome chip. 

Determining genetic ancestry   

We utilized Principal Component Analysis (PCA) for dimensionality reduction on genetic data of the 

cohort to obtain a metric for genetic ancestry. We performed the following QC steps on the genotype 

data: we cleaned the data for individual and site level missingness to a threshold of 95%, kept only 

common variants that had >=1% minor allele frequency, thinned linkage disequilibrium to a r2 of 0.3, 

and removed human leukocyte antigen and lactase genetic regions. We ran this cleaned genotype 

data into the EIGENSOFT [4] smartpca tool to generate PCs for each individual by first training the 

space on the European ancestry individuals from Utah (CEU), Yoruba in Ibidan, Nigeria (YRI), and 

Han Chinese in Beijing, China  (CHB), which were used as European, African, and East Asian 

ancestry reference panels from 1,000 genomes project, respectively [5]. For the models of our 

analyses, we used the top five PCs for each individual as covariates.  

Trait measurement processing, quality control, and confounding factor filtering 

The 10 metabolic/cardiovascular-related traits selected for analysis, specifically: glucose, hemoglobin 

A1c, total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, high sensitivity C reactive 

protein, diastolic blood pressure, systolic blood pressure, and white blood cell count, were collected 

from the MSH EMR databases, in the form of individual, value, date, and unit of measurement. As 

such, an individual could have multiple associated measurements per trait. As mentioned, these trait 

values are susceptible to confounding factors, such as disease status, medication use, and 

infrastructural factors of the EMR database. As no easily adaptable, universal procedure exists to 

address these factors, we devised and performed a rigorous quality control procedure per trait. 
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Furthermore, while there are some standardized procedures that exist for these purposes, such as 

adding 15 and 10 mmHg to systolic and diastolic measurements respectively to patients taking a 

blood pressure lowering medication [6], we opted to perform identical quality control procedures for 

each trait for a few reasons: first, our filtering methodology is more conservative; second, it is more 

comprehensive (including many potentially relevant medications); third, it follows the same rules for all 

traits, enhancing our ability to compare associations across traits; and lastly, it makes no assumptions 

on effect of drug (i.e. blood pressure medications might affect individuals differently, which is masked 

by a standard adjustment procedure). As an initial step, we only included measurements that were 

taken during an “Outpatient” encounter, excluding both “Inpatient” and “Ambulatory/Emergency” 

encounters as the latter are more likely to represent active disease states.  

Excluding relevant medication-affected trait values criteria and procedure. We utilized medication 

prescriptions as markers of an affected measurement (to be excluded) as medications can both 

indicate disease presence and affect trait levels independently. We incorporated medication data for 

any type of patient visit (Inpatient, Outpatient, or Ambulatory/Emergency) to gain a complete picture of 

patient health state. Each prescription instance is comprised of drug name, dosage, route of 

administration (e.g. oral), and visit type. The medication data retrieved from the EMR is directly 

connected to the EPIC system, which utilizes First DataBank  (First Databank, South San Francisco, 

CA; http://www.fdbhealth.com) in its back end to manage drug-related data. The First DataBank 

hierarchical framework provides ontological mappings for all medications to a specific Therapeutic 

class, Pharmaceutical class, and Pharmaceutical sub-class, which is particularly useful as a single 

medication can have a multitude of string identifiers (i.e. different dosages, generic vs. brand names). 

Accordingly, we connected the drug name within each prescription instance to First DataBank 

mappings. The First DataBank contains information on 115,677 medications, 48 Therapeutic classes, 

885 Pharmaceutical classes, and 1,577 Pharmaceutical sub-classes.  

Two physician cardiologists were in charge of identifying specific classes of medications that could 

affect each trait (Supplementary Table 2). If there was any disagreement, a third expert made the final 

decision. As such, we compiled a list of all medications that can affect each trait through mapping 

from Therapeutic class. Additionally, we identified classes of medications that can affect all traits of 

interest (e.g. cancer treatment medication). To enact this filtration procedure, we compared dates of 

measurement collection to dates of drug prescription.  If an associated medication was prescribed 

three months before or three months after (180 day total window) a measurement was taken, we 

flagged it for removal (see Supplementary Fig. 2B for a visual description of this filtering procedure). 

The three month window was selected as a typical timeline for which a prescription refill would be 

necessary. As mentioned, we also included a window to exclude the measurement if a relevant 

medication was prescribed within three months after the collection date. This was enacted to 

safeguard against latent or undiagnosed disease states that could still affect the trait level during 

pathogenesis.  

Trait measurement exclusion criteria and procedure. We first filtered trait data for mismatched units. 

However, clerical errors (i.e. incorrect measurement label or typos) could still allow physiologically 
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impossible measurements to be in our dataset. Accordingly, we first compiled normal reference 

ranges per trait and then filtered values that were: greater than 3x the upper reference range and 

lower than 1/3 the lower reference range. We present the filtering figures due to outliers in 

Supplementary Table 4. 

Once all incorrectly labeled, outlier, and medication/disease-affected measurements were filtered out, 

we combined any remaining measurements into a single median value per person. Any individuals 

without any remaining clean measurements were excluded from the particular trait analysis. We 

present a list of the number of individuals and affected measurements that were excluded per trait for 

drug filtering along with the total number of individuals and measurements that were excluded due to 

drugs and outliers in Supplementary Table 3 and 4 respectively. We compile the total number of 

measurements and individuals used before and after these filtration steps per trait in Supplementary 

Table 5. 

Gene ontology annotation  

In order to identify knowledge-based associations of interest as further refined candidates for 

therapeutic validation, we intersected the combined significant associations between both cohorts 

with relevant Gene Ontology (GO) terms [7] (Supplementary Table 8). Specifically, we highlighted any 

association in which the gene had a related “Biological Process” to the traits of interest (e.g. lipid 

metabolic process, regulation of blood pressure). 

 

SUPPLEMENTARY RESULTS 

Effect of medication on gene-trait association results 

In total, 10,072 (95.8%) individuals in the utilized cohort had at least one prescription instance, which 

encompasses drug name, dosage, and route of administration. On average, individuals in our cohort 

had 132.5 ± 264.4 (std) prescription instances. If limited to unique prescription instance (i.e. drug 

name-dosage-route of administration combination), individuals in our cohort had an average of 50.6  ± 

58.5 (std) prescription instances. The distribution of prescriptions per individual (Supplementary Fig. 3) 

reflects the imperative need for this type of filtering. 

To demonstrate the importance and utility of the rigorous quality control process for trait data, we 

performed the same analysis on the raw trait data prior to removal of medication/disease-affected 

measurements. While the overall numbers for each condition seem similar, the differences reveal the 

importance for this correction (Supplementary Fig. 5). In cases where an association was significant 

in the raw data but not in the cleaned data, these can be interpreted as potential false positives. In 

total, we found 136 instances of these potential false positive associations (p-clean>0.05, p-raw<0.05). 

Associations that were significant in the cleaned data but not in the raw can be interpreted as 

potential false negatives. We found 145 instances of potential false negatives (p-clean<0.05, p-raw-

>0.05). To illustrate these points, we present an example of the association between CPA1 gene and 
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total cholesterol levels (Supplementary Fig. 6).  Using the raw data, we identified a significant 

association between LoF in the CPA1 gene and reduced cholesterol level (p=0.019; Supplementary 

Fig. 6A). However, the association is no longer statistically significant after the data was corrected by 

removing medication-affected measurements (p=0.36; Supplementary Fig. 6B). Therefore this 

association represents a potential false positive result.  

 

SUPPLEMENTARY DISCUSSION 

Novel genes implicated in cholesterol and triglyceride homeostasis 

RNMTL1 (RNA methyltransferase-like protein 1) is a member of the RNA methyltransferase family 

responsible for methylation of G (1370) of the human 16S rRNA complex [8]. Inactivation of RNMTL1 

in HeLa cells by RNA interference resulted in respiratory inefficiency due to reduced mitochondrial 

translation [9]. In humans, RNMTL1 is specifically expressed in liver [10]. In contrast, SCRN2 

(secernin-2) is ubiquitously expressed across many tissues and is involved in exocytosis in mast cells 

[11]. Other than that, SCRN2 in muscle cells has been negatively correlated with plasma triglyceride 

levels in F2 mice [12]. PCK2 (phosphoenolpyruvate carboxykinase 2) is a mitochondrial gene also 

expressed in a variety of human tissues (mainly in liver, kidney, pancreas, intestine and fibroblasts). It 

has been implicated in glucose homeostasis in the liver (in its cytosolic form) [13]. 

SLC39A5 (solute carrier family 39 member 5) belongs to the ZIP family of zinc transporters and plays 

a crucial role in controlling intracellular zinc levels [14]. It is expressed in a variety of tissues including 

liver, kidney, pancreas, small intestine and colon [15]. In humans, mutations in this gene have been 

associated with autosomal dominant myopia [16] but its functional role requires further 

characterization. ABHD14B (abhydrolase domain-containing protein 14B) is also ubiquitously 

expressed across tissues [17], encoding an enzyme with largely unknown function. However, some 

evidence suggests it is involved in nuclear transcription activation [18]. Moreover, a genetic mutation 

in ABDH14B has been associated with a mitochondrial complex III enzyme deficiency [19]. NMRAL1 

(NmrA like redox sensor 1) encodes a sensor protein that preferentially binds to NADPH. Association 

with argininosuccinate synthase (AS) impairs its activity and reduces the production of nitric oxide, 

which subsequently prevents apoptosis [20]. The encoded protein has also been shown to negatively 

regulate NF-kappaB in an ubiquitylation-dependent manner [21, 22]. 
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SUPPLEMENTARY TABLE AND FIGURES LEGENDS 
 

Supplementary Table 1. All predicted LoF mutations along with the predicted effects by annotator and 

frequencies within the BioMe Biobank cohort and public data sources, namely 1,000 genomes [23], 

ExAC [24], and GO ESP6500 [25].  

Supplementary Table 2. A detailed map of medication categories selected for filtration for each trait. 

The therapeutic and pharmaceutical classes and pharmaceutical sub-class of drugs classified by First 

DataBank along with the traits determined as affected by type. Also provided are the number of 

unique medications encompassed by each type along with the number of unique individuals in the 

BioMe Biobank cohort that are prescribed at least one of them. 

Supplementary Table 3. The trait filtering procedure due to medications. Shown are the numbers of 

individuals and measurements before and after medication filtration as well as the number of each 

that were excluded due to this step. 

Supplementary Table 4. The trait filtering procedure due to biologically relevant outliers. For each trait, 

the lower and upper bond reference range along with the outlier cut-offs are provided.  Further 

outlined are the numbers of individuals and measurements before and after filtration as well as the 

numbers of each that were excluded from this step. 

Supplementary Table 5. The overall trait statistics due to both medication and outlier filtration.  Shown 

are the numbers of individuals and measurements before and after filtration along with the number of 

each that were excluded due to filtering. 

Supplementary Table 6. Detailed results of gene-trait association analysis in the BioMe Biobank 

cohort. 

Supplementary Table 7. Detailed results of significant associations with matching directions of effect 

in both BioMe Biobank and STARNET cohorts. 

Supplementary Table 8. Associations significant in both BioMe Biobank and STARNET cohorts 

involved in relevant GO-related Biological Processes. 

Supplementary Table 9. siRNA and Taqman assays and the degree of siRNA inhibition. siRNA and 

TaqMan assays used to silence genes and measure the degree of gene silencing of HepG2 cells. 

 

Supplementary Figure 1. The predicted LoF variants in the BioMe Biobank cohort. (A) Breakdown of 

annotation type (stop-gain, splice site, or frame shift) calls per annotation for all available variants. (B) 

Raw numbers and overlap of LoF annotation per annotator. A variant was deemed LoF if at least 2 

out of 3 annotators called it such (overlapping sections; bolded numbers). 
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Supplementary Figure 2. Further details of the curation process for genetic and clinical data displayed 

in Figure 1. (A) The number of variants removed in the various filtering steps in the QC process 

leading to the final count (n=2,818) used for the study. (B) How measurements were filtered due to 

medication effects, per trait. We flagged any trait measurement that occurred either 90 days before 

(i.e. window of disease pathogenesis process) or after (i.e. biased due to effects of the medication) a 

medication prescription. The median of the remaining “clean” measurements was used as the 

representative value. 

Supplementary Figure 3. Distribution of medication prescriptions within BioMe cohort. The distribution 

of the (log10) number of selected medications taken per individual in the BioMe BioBank in terms of 

all prescriptions (Overall) and unique medications (Unique). 

Supplementary Figure 4. Distribution of t-statistic beta values within BioMe associations. The 

distribution of t-statisticβ values (β divided by standard error), for all nominally significant LoF gene-

trait associations (p<0.05) in BioMe Biobank, separated by trait. 

Supplementary Figure 5. The effect of medications on gene-trait associations. The relative amount of 

significant gene association that overlaps (both) and is unique to cleaned trait data (i.e. medication-

effects removed) and raw data (outlier filtration only), as shown for each trait. 

Supplementary Figure 6. Association between CPA1 LoF and cholesterol levels with and without 

controlling for medication effects. (A) Significant association in raw trait analysis (no medication 

filtering; p=0.019). (B) Non-significant association (p=0.36) after controlling for medications that affect 

cholesterol levels. 

Supplementary Figure 7. The predicted LoF mutation in DGAT2 and its predicted effect on protein 

structure. (A) The position of the LoF mutation (p.Tyr285*) within DGAT2. (B) The canonical protein 

structure of wild type DGAT2 protein. (C) The predicted structural effect with the LoF mutation. 

Supplementary Figure 8. Effect of Box-Cox transformation on all traits in BioMe/EMR cohort. (A) 

Untransformed trait distributions. (B) Transformed trait distribution. (C) Untransformed trait QQ plots. 

(D) Transformed QQ plots. 

Supplementary Figure 9. Associations between LoF in the selected genes for in vitro validation (Fig. 3) 

and total cholesterol level (A-C), or triglyceride level (D-G) in BioMe. 
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Supplementary Figure 1. 
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Supplementary Figure 2. 
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Supplementary Figure 3. 
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Supplementary Figure 4. 
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Supplementary Figure 5. 
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Supplementary Figure 6. 
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Supplementary Figure 7. 
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Supplementary Figure 8 (A). 
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Supplementary Figure 8 (B). 
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Supplementary Figure 8 (C). 
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Supplementary Figure 8 (D). 
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Supplementary Figure 9 
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